
A Motor Control Framework for Many-Axis
Interactive Robots

by

Matthew D. Hancher
Submitted to the Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degrees of

Bachelor of Science in Electrical Science and Engineering

and

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 20, 2003

Copyright 2003 Matthew D. Hancher. All rights reserved.

2

A Motor Control Framework for Many-Axis
Interactive Robots

by

Matthew D. Hancher

Submitted to the Department of Electrical Engineering and Computer Science
at the Massachusetts Institute of Technology on May 20, 2003,

in partial fulfillment of the requirements for the degrees of
Bachelor of Science in Electrical Science and Engineering

and
Master of Engineering in Electrical Engineering and Computer Science

Abstract

A motor control system has been developed to address the specific needs of many-axis
interactive robots. It is based on a modular collection of motor control hardware which
is capable of driving a very large number of motors in a very small controller volume.
These controllers support simultaneous absolute position and velocity feedback, allowing
good dynamic performance without the need for a lengthy calibration phase at power-up.
Example firmware has been developed which supports accurate position estimation and
PD control to a continuously-updated target position. The control system is highly flexible,
allowing alternative control algorithms to be developed with ease. A generic software library
has also been developed to provide a clean interface between high-level control code and
low-level motor hardware, as has a generic network protocol, known as the Intra-Robot
Communications Protocol, which provides a simple and extensible framework for inter-
module communication within a complex robot control system.

Thesis Supervisor: Cynthia Breazeal
Title: Assistant Professor of Media Arts and Sciences

3

4

Acknowledgments

This work would not have been possible without the help of many people.

Thanks to my thesis advisor, Prof. Cynthia Breazeal, for supporting me as a graduate
student at the Lab, to Prof. Neil Gershenfeld for supporting me as an undergraduate
before her, and to all my lab-mates past and present for making my time here so
much fun.

Thanks to all my friends and family, and especially Vanessa, for enduring the crazy
antics and long disappearances of a guy trying to finish his thesis.

Thanks to Stan, Richard, J.D., Lindsay, and everyone at Stan Winston Studio for
taking a leap of faith and building us an incredible machine.

Thanks to Rick Ciliberto and Jon Blum for helping out with assembly and testing,
and to Mark, Reuben, and everybody at SPS Tech for happily putting up with my
small production runs and peculiar schedules.

Thanks to Patrick Kane and the Xilinx University Program for their generous support
of students and faculty everywhere, and of this project in particular.

Lastly, thanks to Matthew Reynolds for teaching me what it means to be an engineer,
and to Leila Hasan and Holly Gates for inspiring me to learn.

This work was supported by the DARPA MARS grant NAG-9-1443, by the NSF
Center for Bits and Atoms grant CCR-0122419, and by the many sponsors of the
MIT Media Lab who make this unique research environment possible.

5

6

Contents

1 Introduction 15

1.1 Interactive Robot Control Overview 17

1.2 Low-Level Motor Control . 19

1.3 About This Text . 21

2 The Robots 23

2.1 Early Prototypes: Public Anemone 23

2.2 Primary Application: Leonardo . 28

2.3 RoCo, A Robotic Computer . 32

3 Medusa Hardware 33

3.1 Design Overview . 36

3.2 Eight-Channel Driver Boards . 38

3.2.1 Motor Drivers . 38

3.2.2 Sensor Electronics . 41

3.3 PIC-Based Single-Port Controller . 44

3.3.1 Power Conversion . 45

3.3.2 Controller Architecture . 47

3.4 FPGA-Based Dual-Port Controller 50

4 Medusa Firmware 53

4.1 PIC-Based Controller . 53

4.1.1 Support FPGA . 54

4.1.2 PIC Firmware . 58

4.2 FPGA-Based Controller . 62

4.2.1 FPGA Code Overview . 63

4.2.2 Soft-Core Processor . 67

7

4.2.3 Instruction Set . 70

4.2.4 Control Firmware . 73

5 Support Software 77

5.1 Motor System Software Layer . 78

5.1.1 Motor System Overview . 78

5.1.2 High-Level (Behavior) Interface 79

5.1.3 Mid-Level (Configuration) Interface 80

5.1.4 Low-Level (Driver) Interface 81

5.1.5 Abstract Tree Structure . 82

5.2 The Intra-Robot Communications Protocol 83

5.2.1 IRCP Overview . 83

5.2.2 IRCP Subpacket Formats . 86

5.2.3 IRCP Major Type 0: Low-Level Motion Commands 86

6 Concluding Thoughts 93

A Board Schematics 95

A.1 Eight-Channel Driver Pack . 95

A.2 PIC-Based Single-Port Controller . 95

A.3 FPGA-Based Single-Port Controller 95

A.4 FPGA-Based Single-Port Controller (Model S) 95

8

List of Figures

1.1 Generic robot control structure, emphasizing the motor control com-

ponents. 17

1.2 A typical division of control tasks across multiple computers. Inter-

computer links are the greatest source of latency other than complex

sensor processing such as machine vision. 18

2.1 Left: Prototype of Public Anemone, with assorted prototype control

electronics. Right: Final version of Public Anemone, as shown at

SIGGRAPH 2003. 24

2.2 Left: Public Anemone, with its red silicone skin, playing in the water-

fall at SIGGRAPH 2002. Above Right: Full view of the SIGGRAPH

terrarium. Below Right: The “night” phase of the terrarium’s five-

minute cycle. 26

2.3 Leonardo with almost complete skin and fur. 28

2.4 Leonardo with his skin and fur removed, revealing the internal mecha-

nism. 30

2.5 Artist’s rendition of RoCo, still in the early design stages. 32

3.1 A Medusa PIC-based single-port control board with an eight-channel

motor driver card attached. 35

3.2 A Medusa FPGA-based dual-port control board with two eight-channel

motor driver cards attached. 35

3.3 Two Medusa FPGA-based dual-port control boards each with two

eight-channel motor driver cards, designed for use in Leonardo’s head.

Lego guy included for scale. 36

3.4 Pinout of the Medusa power stacking connector. 37

3.5 Top and bottom views of the Medusa eight-channel motor driver board. 39

9

3.6 Simplified schematic of the H-bridge motor driver topology used in the

eight-channel motor driver boards. 40

3.7 Simplified schematic of the current-sensing circuitry used in the eight-

channel motor driver boards. 42

3.8 Pinout of the SWMOT8/SWMOT8s digital stacking connector. . . . 43

3.9 Pinout of the SWMOT8 (left) and SWMOT8s (right) motor connectors. 45

3.10 The Medusa PIC-based single-port control board. 46

3.11 Simplified schematic of the SEPIC power converter used in the PIC-

based single-port controller. 47

3.12 Simplified schematic of the buck power converters used in the PIC-

based single-port controller and the FPGA-based dual-port controller. 48

3.13 Standardized programming connectors for PICs (left) and FPGAs/CPLDs

(right). 49

3.14 The Medusa FPGA-based dual-port control board (standard model). 50

3.15 Connector pinouts for digital power and RS-485 (left) and motor power

(right) for the FPGA-based dual-port controllers. 51

3.16 The Medusa FPGA-based dual-port control board (smaller S-model). 52

4.1 Verilog PWM generator for the FPGA pwmgen module. 55

4.2 PIC-FPGA host bust 16-bit write cycle. 56

4.3 PIC-FPGA host bust 16-bit read cycle. 57

4.4 PIC communications memory layout. 58

4.5 PIC communications packet format. 59

4.6 High-level processor and memory architecture used in the example

FPGA code for the FPGA-based dual-port motor control board. . . 62

4.7 FPGA communications packet format. The Response byte exists only

in packets sent to the FPGA. 64

4.8 FPGA serial communications address space. 65

4.9 FPGA processor data address space. 67

4.10 Simplified diagram of the processor architecture used in the example

FPGA code for the FPGA-based dual-port motor control board. . . 68

4.11 Processor Control register map. 69

4.12 The Status Register (STATUS), located at data address 0x101. 70

4.13 Processor instruction format. 71

4.14 FPGA control program shared memory layout. 74

10

5.1 Example motor system configuration file for a trivial 1-DOF robot. . 81

5.2 Intra-Robot Communications Protocol packet format. 84

5.3 IRCP low-level motion Joint Capabilities bitfield format. 91

5.4 IRCP low-level motion Joint Status bitfield format. 92

A.1 Schematic of the Medusa Eight-Channel Driver Pack. 96

A.2 Schematic of the Medusa PIC-Based Single-Port Controller. 97

A.3 Schematic of the Medusa FPGA-Based Dual-Port Controller. 98

A.4 Schematic of the Medusa FPGA-Based Dual-Port Controller (Model S). 99

11

12

List of Tables

1.1 Comparison of various motor control technologies. 20

3.1 Summary of Medusa controller specifications (all versions). 34

4.1 Structure of the example Verilog code for the support FPGA on the

PIC-based single-port motor control board. 54

4.2 Structure of the example Verilog code for the main FPGA of the

FPGA-based dual-port motor control board. 63

4.3 Interpretation of the Opcode instruction field. (ARG1 and ARG2 are

the instruction arguments, the first always coming from data memory

and the second coming from the W register or an instruction literal

depending on the value of the WLI bit.) 72

4.4 FPGA soft-core processor assembler instruction summary. 75

5.1 Public methods of the motor system class (partial listing). 79

5.2 Public methods of the motor class (partial listing). 80

5.3 Currently assigned major subpacket types for the Intra-Robot Com-

munications Protocol. 85

5.4 IRCP subpacket formats supported by the reference implementation. 87

5.5 IRCP Minor Types defined for Major Type 0: Low-level motion. . . . 88

13

14

Chapter 1

Introduction

The problem of giving a mechanical apparatus the appearance of life has inspired

artists, engineers, and tinkerers for centuries. Their creations, from the early me-

chanical automata of Vaucanson, Jaquet-Droz, and others in the 1700s to the latest

Hollywood animatronics, have been enormously successful as tools for entertainment

[CD58, SH94]. In recent years much more serious applications for these technologies

have emerged. As computers have become more powerful, the demands of human-

computer interaction have increased. Users are regularly faced with an overwhelming

array of choices and are given little help in deciphering them. One proposed solution

has been to adopt a social model: rather than forcing users to learn sophisticated

new modes of interaction, program the computers to interact with people in a natural

social manner instead. A well-designed socially-interactive robot could then become

the ultimate user-friendly interface [ABBS00].

Another application for socially-interactive robots is the study of social interaction

in general. A robot can be programmed according to theoretical models of social

behavior, and the veracity of those models can be tested by observing how people

actually interact with it. Such a robot need not attempt to perfectly model the human

form or human interaction. Rather, by modeling some elements and not others it may

be possible to learn which factors are important to human interaction and which are

not.

The Robotic Life Group at the MIT Media Lab was founded in large part to study

robots from these dual vantage points of human-computer interaction and behavioral

science. It constructs robotic creatures designed to engage and ultimately learn from

the people with whom they interact. This requires developing new sensor and actuator

15

technologies, modeling social behavior and learning, and then integrating everything

into a unified robot control framework. One key element in such a framework is a low-

level motion control system; this thesis describes hardware and software that have

been developed over the last two years to address the special motor control needs

presented by interactive robots of this sort.

These motor control requirements are quite different from those presented by

robots elsewhere. Industrial robots, for instance, typically have the minimum number

of degrees of freedom required to perform some specific manipulation task. In that

context a robot with six or eight degrees of freedom is considered highly articulate.

More complex robots can be found in the research community, of which the most

sophisticated are the humanoids. Several research institutions have constructed such

robots, including the MIT AI Lab’s Cog [BBM+98], NASA’s Robonaut [AAA+00],

Honda’s ASIMO [SWA+02], and Sony’s SDR-3. Each of these has on the order of

thirty degrees of freedom except Robonaut, which has extremely dextrous hands that

bring the total number of joints to almost fifty. These robots are used primarily

as platforms for research in motion planning, learning, adaptive control, and sim-

ple human-robot interaction. However, none of these robots is capable of life-like

expressive motion.

There are two classes of robots more closely related to the present work. On the

one hand there there are robots designed to study subtler forms of social interaction,

most notably the AI Lab’s Kismet [Bre02]. Kismet is not capable of full-body motion

like the larger humanoids, but instead possesses a rich set of social behaviors that

take advantage of its highly expressive face and head. On the other hand there

are the most lifelike robots of all, those designed by visual effects studios such as Jim

Henson’s Creature Shop or Stan Winston Studio specifically for the purpose of looking

convincingly alive [SH94, Bac97]. Many of these robots posses even more degrees

of freedom than the research humanoids, but they are not capable of autonomous

operation. Instead, teams of human puppeteers drive these robots in real time or

with simple motion playback systems. The robots of the Robotic Life Group aim

to bridge this gap between small expressive autonomous robots such as Kismet and

tele-operated Hollywood animatronics.

16

Figure 1.1: Generic robot control structure, emphasizing the motor control
components.

1.1 Interactive Robot Control Overview

The more complex robots of the Robotic Life Group all share a common high-level

control structure. At the core is a behavior engine developed in conjunction with the

Media Lab’s Synthetic Characters Group. It is based on the Synthetic Characters C4

codebase, an extremely flexible set of Java character control tools originally created to

drive that group’s interactive on-screen animated characters. This framework includes

generic support for a variety of models of perception, learning, and behavior. It also

contains a motion control system which generates appropriate motion data through

animation blending. In this scheme professional animators generate a number of

sample animations using a 3D robot model. This data set is then interpolated to

produce new animations in response to user interaction. Though this system was

not originally designed for robot control it is nevertheless quite useful, as many of

the issues encountered in interactive robotics are very similar to those that arise in

advanced computer graphics [KB99, Joh02]. NASA has used a similar scheme to

control Robonaut, using basis trajectories generated by tele-operating the robot to

perform various tasks.

The basic system structure is shown very simply in Figure 1.1. The behavior

engine, represented by a single block in this diagram, in fact consists of several

subsystems, including a behavior system as well as a perceptual system and a motion

system. This ensemble resides between the sensors and the motors and continuously

computes the motor trajectory based on sensor inputs. This motion data is sent to

the motor interface software which is in turn responsible for commanding the actual

motor control hardware to make the robot move as requested. This mode of operation

is quite different from that found in other branches of robotics. For example, in

industrial robotics it is customary for a trajectory to be completely pre-computed

17

Figure 1.2: A typical division of control tasks across multiple computers.
Inter-computer links are the greatest source of latency other than complex sensor
processing such as machine vision.

before motion begins. The low-level motor system performs the specified motion and

comes to a halt at the end to wait for its next command. This structure makes it

easy to optimize the trajectories for some desired quality, such as high accuracy or low

power consumption, but is unfortunately entirely inapplicable to interactive robotics.

In order to appear life-like an interactive robot must be able to respond to some

stimuli nearly instantaneously, both to permit fast reflex responses and to allow tight

closed-loop control based on perceptual feedback, and so the motor system cannot

ever commit the motors to a pre-specified trajectory.

The Synthetic Characters behavior engine’s motion system generates poses at a

rate of 20–60 per second. These poses are passed to low-level interface software either

through the Java Native Interface (JNI) or via network sockets. The poses may be

modified at this stage to enforce constraints such as joint limits or maximum joint

velocities, and the data may be up-sampled to provide a higher controller update

rate. This up-sampling is particularly important if the behavior engine’s update

rate is on the low side, because otherwise the discreet updates result in visibly

jittery motion. The network sockets interface is considerably more flexible than

JNI because it allows the low-level software and behavior engine to be located on

different computers. However this introduces network transmission latency into the

control loop. To get around this, the low-level sensor interface software should located

on the same computer as the motor interface software; these modules can then be

programmed to directly implement high-speed reflex actions. This structure, with

fast reflex responses initiated by one system and slower responses that require more

18

computation handled by another, closely resembles the structure found in animals

and should make it possible to generate convincing interactive behavior even if some

control paths have non-negligible latency. A typical division of labor between multiple

computers based on this design philosophy is shown in figure 1.2.

1.2 Low-Level Motor Control

This thesis describes the Medusa line of motor controllers, developed by the Robotic

Life Group to fill an important gap in the range of DC servo controllers. Three

motor control requirements which are critically important to the Robotic Life Group’s

interactive robots guided this design. The first is controller density, the number of

joints which can be controlled in a given controller volume. This is important because

the number of motors in each robot is extremely high. It is not always acceptable to

run wires from each of a robot’s motors to an external control box, since the associated

mass of cabling can restrict the robot’s motion and ruin the aesthetic effect. The

controllers must therefore be extremely small so that they may be embedded directly

inside the robot. The second motor control requirement is support for continuous

updates. The controllers must be able to track continuously-varying target positions

seamlessly with low latency and small variation in latency across a large number

of joints. Some commercially-available systems enforce a trapezoidal motion profile,

for instance, and cannot be interrupted until a motion is complete. The last key

requirement is support for absolute position feedback. Without this a motor control

system must calibrate its motors’ absolute positions each time it is turned on, a

potentially lengthy and extremely annoying procedure.

No commercially-available control hardware is able to meet these three require-

ments simultaneously. The detailed specifications of the Medusa controllers are

discussed in Chapter 3, but Table 1.1 compares these controllers to a number of

alternatives in general terms. Unfortunately, little information is available about the

motor control systems used by robots elsewhere, either because they are proprietary

(as in the case of robots developed at corporate research institutions) or because they

are simply not the focus of research and hence of publication.

Standard industrial controllers are unacceptable first and foremost because they

are too bulky to be embedded inside small expressive robots. One of the most com-

pact of the commercial servo controllers is the Animatics RTC-3000, which occupies

19

Controller Type Continuous
Update

Volume/
Channel

Absolute
Position

Max
Current

Input
Voltage

Single
Supply Interface

Animatics RTC-3000 Yes 2.3 in3 No 1A 24V Yes RS-232
RS-485

ICD Motovator LVDC Yes 432 in3 Yes 3.5A 12–48V Yes DMX

Logosol LS-173AP No 14 in3 Yes∗ 8A 12–90V Yes RS-485

J.R. Kerr PIC-SERVO No 10 in3 No 3A 12–48V No RS-485

Hobby Servos Yes — Yes ≈1A 4.8-6V Yes PCM

Custom distributed Yes 2–4 in3 Yes any any any any

Medusa (Single-Port) Yes 0.9 in3 Yes 5A 5–30V Yes RS-232

Medusa (Dual-Port) Yes 0.5 in3 Yes 5A 0–30V No RS-485

∗Limited support only.

Table 1.1: Comparison of various motor control technologies.

2.3 in3 and can drive a DC motor with up to 1A continuous current. The motor

controllers described in this thesis support over four times as many motors per unit

controller volume, and can provide up to five times as much continuous motor current.

Moreover, the Animatics controller, like many commercially available systems, does

not support absolute position feedback.

There are some commercial controllers which can be used with absolute position

sensors as well as the more traditional velocity encoders. The Intelligent Control De-

vices Motovator LVDC module is one such controller. Designed for the entertainment

industry, this DMX-controlled DC servo controller has specifications very similar

to the hardware described in this thesis. Unfortunately each controller occupies a

6”×12”×6” volume per motor! Such a system is completely inappropriate for use

with compact many-axis robots. Another commercial controller, the Logosol LS-

173AP, is promising in many respects. However close examination reveals that this

controller does not take full advantage of the redundant absolute and relative position

sensors. Rather, it is only capable of moving at a controlled velocity until the absolute

sensor returns a given value. If the sensor is noisy, as potentiometers generally are,

this could result in unpredictable behavior. More importantly, this scheme is not

compatible with the need for continuous updates.

All other commercial controllers are inappropriate for one reason or another. One

possible solution is to use motors with integrated controllers. Many such systems exist

20

for industrial applications, but these are too bulky to use here. The hobby industry,

however, offers a wide range of small integrated packages designed to move the control

surfaces on remote-controlled airplanes and boats. Some animatronic creatures, such

as the extremely successful robot Teddy produced by Stan Winston Studio and seen in

the movie A.I.: Artificial Intelligence, have been built using this technology. However,

these servos do not allow for the precise control required for object manipulation or

machine vision with eye-mounted cameras. In addition they are quite loud, which

can ruin the effect of otherwise life-like interaction. For these reasons, standard high-

quality DC motors with external controllers are to be preferred.

The hardware presented in this thesis is optimized for controlling a large number

of relatively small DC servo motors. In each of the variations a single processor is

used to control multiple channels. One alternative architecture which was considered

would have used extremely compact single-channel controllers located throughout a

robot immediately adjacent to the motors they control. Such a distributed control

system could certainly be made to work, but the controller density could never be

made as low as is possible with centralized control. The volume associated with the

processor, power conditioning circuitry, and connectors at each control board would

double the total volume. The most compact version of the controllers described in

this thesis, the S-model dual-port controller, can control sixteen motors in a volume

of only 0.5 in3 per motor. Designing a flexible single-channel controller in that volume

would be virtually impossible. One advantage to the distributed control technique is

that it allows a simple wiring scheme in which a single daisy chain connects all the

motors together. However, this too would come at a price: there are far more single

points of failure in such a scheme than in the one used here, potentially reducing

the overall system reliability. The length and aggregate resistance of a daisy chain

with many motors could also introduce significant noise into the power supply and

communications lines, decreasing reliability still further.

1.3 About This Text

This document is intended in part as an introduction to the Medusa hardware and

related software to be read by future engineers who will be using them. However, there

is not nearly enough space here to provide complete documentation, and the firmware

and software are being constantly updated. A website is currently being assembled

21

to provide thorough, up-to-date information about this motor control system. The

website can be found at http://robotic.media.mit.edu/motor/.

In Chapter 2 we will describe the robots for which this control system was orig-

inally intended. The most challenging is a new humanoid robot known as Leonardo

which was developed in collaboration with Stan Winston Studio. The particular

needs of these three robots informed the design of the control hardware, which

is described in detail in Chapter 3. This hardware contains many programmable

devices; the firmware that was developed for them is discussed in Chapter 4. Such

hardware is of course of no use without a mechanism for high-level control software

to communicate with it. A general motor control software library and a network

interface are described in Chapter 5. The network protocol, known as the Intra-

Robot Communications Protocol, was designed as a general-purpose protocol to be

used throughout an interactive robot. Chapter 6 offers concluding thoughts and

suggests future directions for this work.

22

Chapter 2

The Robots

The motor control system described in this thesis was designed both as a general

framework for future development and as a solution to specific problems presented by

three particular robots. In this chapter we will discuss these robots, known as Public

Anemone, Leonardo, and RoCo. The first two of these provided important testbeds

for early prototypes, and we will discuss those experiences here as well.

2.1 Early Prototypes: Public Anemone

Public Anemone was the first major project of the Robotic Life Group. It was

conceived as an exploration in non-anthropomorphic interactive robotics, and was

displayed at the Emerging Technologies exhibition at SIGGRAPH 2002 in San Anto-

nio. The robot consists of a tentacle-like body with five smaller tentacle-like fingers

and was covered in a synthetic silicone skin for the exhibition, giving it an organic

appearance.

The original design called for the Anemone to be submerged in a large vat of oil

with a layer of glowing goo at the bottom for the robot to play with. The body and

fingers were remotely cable-driven in this design, avoiding problems associated with

operating motors in oil. However, an early prototype revealed that the cable drive

system did not allow sufficiently precise control over the arm’s motion, although the

movement had a excellent smooth quality. A completely new mechanism was designed

which, it was hoped, would improve the controllability of the body without sacrificing

its smooth motion.

23

Figure 2.1: Left: Prototype of Public Anemone, with assorted prototype
control electronics. Right: Final version of Public Anemone, as shown at
SIGGRAPH 2003.

The new design was based on an eight-stage segmented arm with embedded DC

gear motors directly driving each stage. The fingers were still cable-driven, but the

drive motors were moved to the tip of the arm, thereby minimizing cable length. Each

of the direct-drive motors was outfitted with a potentiometer to measure its position,

while the finger motors had traditional quadrature encoders. Encoders were not used

in the direct-drive stages for two reasons. First, the encoders that were available at

the time added considerable length to the motors and could not fit in the desired robot

volume. Second, using encoders as position sensors would have required a calibration

phase at power-up (since quadrature encoders can’t sense absolute position) and

would have left the body joints susceptible to encoder drift.

The challenge of this design was developing a control system capable of achieving

a life-like quality of motion. A commercial single-channel motor driver, the J.R.Kerr

PIC-SERVO controller, was chosen to drive each of the fingers. These boards feature

an RS-485 daisy-chain communications system which appeared to make them quite

flexible. However, they only support encoder feedback and so could not be used

to control the Anemone’s body. Therefore the first of the custom Robotic Life

24

motor controllers was designed, closely based on the design of the PIC-SERVO but

with a 16-bit A/D converter in place of the quadrature decoding hardware. Five of

the J.R.Kerr boards and eight of the custom boards were used to drive the Public

Anemone prototype, shown at left in Figure 2.1.

This design suffered from a number of major problems. First, the body motors

required large gear-down ratios so they could generate enough sufficient torque to lift

and move the hefty Anemone body. Planetary gear boxes of this sort have a backlash

region on the order of two degrees wide. As a result, when the Anemone passed near

the vertical configuration several motors in series would pass uncontrolled from one

side of the backlash region to the other. This problem was exacerbated by the fact

that the data from the potentiometers was so noisy that the position control gains had

to be kept quite low. Electronic damping was virtually impossible, since this requires

a velocity measurement which could only be obtained by differentiating the already

extremely noisy pot signals. The noise was caused both by the pots themselves—most

potentiometers have terrible dynamic performance—and by the motor PWM signals

coupling to the adjacent high-impedance pot return lines.

To address the backlash problem torsion springs were added at each stage to

preload each joint, forcing the gear box to one side of the backlash region at all times.

The controller performance was also improved with the addition of quadrature en-

coders to each motor. These Maxon MR-series encoders are based on a new magneto-

resistive technology which is more sensitive than the traditional Hall-effect sensing

technique and consequently permits smaller magnets and a considerably thinner total

package. The encoders were installed in addition to the existing potentiometers, which

were left in place to allow the robot to determine its absolute position at all times.

The final mechanism, incorporating these changes and re-built in aluminum, is shown

at right in Figure 2.1.

Another important lesson that came out of the early experiments is that the

complexity and overhead associated with using a separate microprocessor for each

motor can become problematic as the number of motors becomes large. A more

sophisticated communications system could certainly address this problem success-

fully, but the simple RS485 system used by the J.R.Kerr boards turned out not to be

particularly scalable. It was designed for occasional position updates in an industrial

environment, and with a large number of channels it could not support the constant

trajectory updates that were required.

25

Figure 2.2: Left: Public Anemone, with its red silicone skin, playing in the
waterfall at SIGGRAPH 2002. Above Right: Full view of the SIGGRAPH
terrarium. Below Right: The “night” phase of the terrarium’s five-minute cycle.

One more problem arose with the exhibit design: neither the Anemone’s poten-

tiometers nor its motors were able to operate properly for extended periods while

submerged in oil. Since there were also obvious logistical concerns surrounding the

maintenance of an oil-submerged robot, the oil tank was eliminated from the exhibit

design in favor of a cave-like terrarium. This environment was also populated with a

number of smaller interactive creatures which operated during a “night” phase once

every few minutes. The Anemone went to sleep during this phase, allowing its motors

to cool down and thereby helping it sustain eight hours a day of continuous operation

for five days at SIGGRAPH. The final terrarium as shown in San Antonio is pictured

in Figure 2.2, featuring the Public Anemone with its red silicone skin.

In order to control the final Public Anemone a control system was needed that

could take proper advantage of the redundant data from the potentiometers and

quadrature encoders. In addition, it needed to support a position update rate greater

than 30Hz, and preferably twice that, ideally using a standard PC serial port. This

26

meant that the serial system could not use a poll-and-response protocol such as

the J.R.Kerr protocol to communicate with each individual joint; the I/O delays

in the computer would limit such a system to around a 10Hz update rate for the

eight-stage body. An integrated eight-channel controller was developed to address

these problems. It was based on the same design principles as the Medusa hardware

described in the next chapter, and served as an early prototype for that line. The

J.R.Kerr PIC-SERVO was still used to control the fingers, but with custom firmware

that better supported continuous position updates. Unfortunately the quadrature

decoding hardware on those boards is particularly susceptible to encoder drift, and

this was a recurring problem at SIGGRAPH. In the near future Public Anemone will

be re-installed as a research robot at the Media Lab and will operate under the full

control of the hardware described in this thesis.

At its highest level, the robot was controlled by the Synthetic Characters C4

behavior engine described in Chapter 1. Professional animators were hired to produce

a variety of motion animations covering the full range of desired behaviors. As

discussed, the control system then used an animation-blending scheme to produce

novel motions based on the provided key-animations. The uppermost two body stages

were controlled using a separate procedural algorithm that allowed the Anemone to

orient accurately towards people in the audience. At SIGGRAPH the robot’s only

inputs were two stereo camera pairs, one located above the terrarium and one hidden

in the cave behind. These gave the behavior engine information about the location

of the people observing the robot, which the robot used to look at them or to back

away in fear if people got too close. When it was not tracking on-lookers, the robot

performed a a variety of idling tasks, such as playing in the terrarium’s waterfall or

watering the nearby flora.

In this installation the behavior engine’s motor system communicated with the

low-level motor control software via the Java Native Interface (JNI). This was a

relatively efficient means of communication, but it required the behavior engine to be

fully reloaded for each change in the low-level motor system and required the motor

system and control hardware to be shut down for each change made to the behavior

engine. This represented a significant impediment to rapid system development,

particularly since the Synthetic Characters behavior engine takes a considerable

amount of time to initialize. The network-based communications protocol described

in Chapter 5 was originally developed primarily as a solution to this problem.

27

Figure 2.3: Leonardo with almost complete skin and fur.

2.2 Primary Application: Leonardo

Much of the design of the Medusa hardware described in this thesis was inspired by

the needs of one robot, Leonardo. Leonardo is a humanoid robot with passive legs

being developed in a collaboration between Stan Winston Studio and the Robotic

Life Group. Unlike Public Anemone, Leonardo was designed for traditional social

interaction. Stan Winston Studio is a Hollywood visual effects studio with expertise

in building convincing live-action animatronic characters. However, their characters

are teleoperated and have no autonomous behavior capability. They designed the

look and mechanism of Leonardo and provided him to the Media Lab for use as a

testbed in autonomous character control.

Leonardo is a young and somewhat mischievous-looking furry creature standing

roughly two feet tall, with a highly expressive face and upper body. The robot features

61 distinct points of motion, including 32 in the face alone. This makes Leonardo the

most sophisticated such expressive humanoid robot in existence. He is covered with

a silicone- and foam-based skin and a mix of furs from real animals, all crafted using

28

the most advanced Hollywood special effects techniques. Leonardo is not a mobile

robot: his body is fixed to a platform, and a number of degrees of freedom are cable-

driven from beneath. He was instead designed to push the boundaries of life-like

robot behavior in close interaction. Figure 2.3 shows Leonardo with almost finished

skin and fur; the hands in particular are incomplete in this picture.

This research is of great interest to the entertainment industry because complex

animatronic characters require so many puppeteers to operate that improvisation is

essentially impossible. Each sequence of moves must be precisely rehearsed many

times so that all parts of the robot move in concert. In the future an autonomous

behavior system could be used to control the robot’s basic functions while a single

puppeteer issued high-level commands. For instance, the puppeteer might direct

the robot’s attention by selecting an object of interest on a screen, and the robot

would then be capable of moving its eyes, head, and body in a lifelike way to look

at the object. If the object moved machine vision could be use to track it, freeing

the puppeteer from the need to make continuous adjustments. This is but one of

many possible scenarios in which a computer-controlled animatronic could allow for

a more expressive and improvisational performance, either on the set or in any other

interactive setting.

The Robotic Life Group is primarily interested in Leonardo as a tool for research in

human-robot cooperation. This research extends the work done by Prof. Brezeal and

others at the MIT AI Lab, and especially the work on the expressive face and head

robot known as Kismet. This research is in collaboration with the NASA Robonaut

project, which is concerned with developing a robotic assistant for astronauts in

space. A comfortable, intelligent social interface could make such a robot vastly

more efficient for its human teammates. Each of the institutions collaborating on the

Robonaut project has an upper-body humanoid of some sort, either real or simulated;

the Robotic Life Group’s focus is social interaction and cooperation, and so Leonardo

is the perfect platform for this work.

Each of Leonardo’s 61 degrees of freedom is controlled by a DC servo motor with

a magneto-resistive quadrature encoder and a shaft potentiometer. This design was

inspired by the earlier experiences with Public Anemone. Some of these motors are

embedded in the robot and directly drive the joints, while others are located in the

base and drive the joints remotely with cables. This mechanism can be seen in

Figure 2.4, which shows Leonardo with most of his skin and fur removed. The robot

29

Figure 2.4: Leonardo with his skin and fur removed, revealing the internal
mechanism.

features many degrees of freedom that are not normally found in humanoid robots.

For instance, in addition to two rotational degrees of freedom each shoulder is capable

of a linear “shrug” motion. This ability would be irrelevant in an industrial robotic

arm, but is it crucial to generating convincing life-like arm motion. The robot can

tilt and lean at both the base and the upper torso, and can also rotate and sway

side-to-side, giving the lower body considerable life and freedom despite being firmly

attached to the base.

The most expressive part of the robot by far, however, is the face and head. The

eyes, eyelids, and brows are all fully actuated, and the ears can move around, perk

up, and fold down. More importantly, seventeen degrees of freedom are reserved for

the mouth and surrounding face. This provides enough flexibility to generate most of

the motions associated with normal speech; only fricatives cannot be faithfully repro-

duced. Moreover, all these degrees of freedom combine to give Leonardo tremendous

range of emotional expression.

30

Thirty of the degrees of freedom in the head are directly-driven. If the controllers

for these motors were placed in the base, then thirty sets of motor and sensor cables

would have to be passed through the neck. This is not even remotely feasible; rather,

these motor controllers must be embedded inside the head as well. No existing

commercial controllers meet these extreme density requirements. Fortunately, most

of these joints do not bear a heavy load, and so high-power drivers are not required.

Meeting this demand was a major driving force behind the development of the

hardware described here.

Because Leonardo has a more complex low-level motor system than Public Anemone,

he presents greater programming challenges. For instance, his motors are driven by

four separate motor control packages, two in the head and two in the base. The

unified motor control software library described in the first half of Chapter 5 was

originally developed to provide a clean programming interface to the behavior system

despite this fact. This library shields the high-level motion code from the details of

maintaining the low-level hardware and coordinating motion across multiple control

modules. In Leonardo this code runs on a separate computer from the high-level

behavior code, one which will also eventually host a large array of sensors measuring

parameters such as skin pressure or proximity. This will allow some relatively fast

reflex-like behaviors which could either help protect the robot or enhance the quality

of interaction.

Much like Public Anemone, Leonardo is controlled at the highest levels by a mod-

ified version of the Synthetic Characters C4 behavior engine. Professional animators

have created an animated model and a range of example animations for use with the

animation blending system. Other motion generation systems are being developed,

including a motion capture suit and a phoneme-based lip-synchronization system.

Animation blending will not be the only control technique used with Leonardo; a

number of procedural control schemes will be used as well. Cameras located in the

eyes will allow him to accurately locate and track objects in his visual field. Precise

arm and body motions generated from inverse-kinematic models will be required for

simple object-manipulation tasks. Designing a common framework to support these

tasks while incorporating blended animations for expressivity is one of the primary

immediate research projects for Leonardo.

31

Figure 2.5: Artist’s rendition of RoCo, still
in the early design stages.

2.3 RoCo, A Robotic Computer

A third robot which is still in the design stages nevertheless played a part in guiding

the design of this motor control system. It is known as RoCo, short for “Robotic

Computer”. Inspired by Apple advertisements featuring an animated iMac computer

interacting with passers-by, it will consist of a flat-panel LCD display on a robotic

arm. An artist’s rendition of the robot, showing its basic structure, is shown in Figure

2.5. Though the mechanism is still under construction, the robot’s behaviors have

been explored using a 3D model.

This robot has fewer degrees of freedom than than the other robots discussed

here. However its control system must be small enough to be embedded inside the

controlling computer; a rack of adjacent equipment would spoil the effect. A small,

easy-to-use general purpose motor driver package, designed to control up to eight

degrees of freedom, was developed to address the needs of simpler robots such as this

one.

32

Chapter 3

Medusa Hardware

The robots described in the previous chapter have somewhat unusual motor control

demands which existing motor control systems, such as those discussed in Chapter 1,

cannot properly address. Both Leonardo and, in the ideal configuration, RoCo need

motor drivers small enough to be embedded entirely inside them. While the number

of motors in each robot is relatively high, especially in Leonardo, the demands placed

on those motors are relatively low. For instance, many of Leo’s joints are purely

expressive and see hardly any load at all. Traditional industrial motor controllers

are much larger than Leo’s volume constraints permit and much more powerful than

required.

Somewhat smaller commercial feedback controllers do exist, but they have other

failings. For instance, most use quadrature velocity encoders attached to the motors

as the only position sensors. While encoders are excellent velocity sensors, they have

one important drawback as position sensors: they do not know their position at

power-up. Robots based on this design must use some special technique to determine

or reset their configuration when they are first turned on, often by gently driving

each motor until it reaches a mechanical stop or triggers a limit sensor. A complex

robot, such as the MIT AI Lab’s Cog, may spend several minutes calibrating itself

each time it is turned on or reset. To avoid this, the robots for which the hardware

described here was designed use a combination of encoders and potentiometers. With

these redundant sensors the robots can achieve the good dynamic performance that

is possible with encoder feedback but can also determine their position virtually

instantaneously.

33

Position Sensing Combined potentiometer and encoder

Channel Density Less than 1 in3 per channel

Motor Voltage Range 5V–24V

Max Continuous Motor Current 5A

Peak Instantaneous Motor Current 50A

Target Position Update Rate Greater than 100Hz

Controller Update Rate Greater than 1kHz

PWM Frequency Greater than 30kHz (inaudible)

Mode of Operation Continuously updated target positions

Table 3.1: Summary of Medusa controller specifications (all versions).

Unfortunately only bulky, highly-configurable industrial control systems are ca-

pable of supporting this non-standard feedback design. Since no existing motor con-

trollers simultaneously offer the high densities and controller flexibility these robots

require, a line of custom high-density controllers was designed specifically to control

them. The most challenging design requirements are provided by Leonardo, and in

particular by Leonardo’s head. There the space constraints are so tight that the

motor controllers must be extremely compact, with wires coming out of all sides.

This image, of a motor controller with wires flowing out snake-like in all directions,

gave this series of controllers its name: Medusa.

In this chapter we will describe the hardware that has been developed to date

for the Medusa motor controller line. We will begin with a general overview of the

system design, and then consider in detail each of the components that has been

designed so far. A single set of core specifications, listed in Table 3.1, guided all of

these designs. However the three motor control packages that can be assembled from

these boards are each tailored to a specific set of needs. One, designed for general use

in small robots, is pictured in Figure 3.1. The second, designed for expressive robots

with more degrees of freedom, is shown in Figure 3.2. The last package, designed

specifically to meet the high control density requirements inside Leonardo’s head, is

shown in Figure 3.3.

34

Figure 3.1: A Medusa PIC-based single-port control board
with an eight-channel motor driver card attached.

Figure 3.2: A Medusa FPGA-based dual-port control board with two
eight-channel motor driver cards attached.

35

Figure 3.3: Two Medusa FPGA-based dual-port control
boards each with two eight-channel motor driver cards, designed
for use in Leonardo’s head. Lego guy included for scale.

3.1 Design Overview

Though these motor controllers were originally intended for use with the robots

described in Chapter 2, it was also hoped that they would be useful for other projects

in the future. This prompted a modular design. Each motor control package consists

of a control board and one or more motor driver boards. The motor boards contain

the power amplifiers, analog sensing circuitry, and other hardware used to interface

to the robots themselves. The control board contains the digital electronics which

implement control algorithms and communicate with the host computer, and also

contains power conversion electronics to generate the various supply voltages that are

needed around the system. Ideally, any control board may be configured for use with

any motor driver boards to meet the needs of each new project.

The interface between the control and driver boards is very simple, consisting of

several power rails and a large number of general-purpose digital I/O lines. This

affords the motor driver designer great flexibility. Power and data are passed over

two separate 64-pin board-to-board mezzanine connectors (Molex series 71436). The

36

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

35
36

37
38

39
40

41
42

43
44

45
46

47
48

49
50

51
52

53
54

55
56

57
58

59
60

61
62

63
64

+V
in

+V
in

+V
in

+V
in

+V
in

+V
in

+V
in

+V
in

+V
in

+V
in

+V
in

+V
in

G
N

D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D

G
N

D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D

+V
in

+V
in

G
N

D

G
N

D
+1

2V

+1
2V

+5
V

+5
V

+V
in

+V
in

+V
in

+V
in

+V
in

+V
in

+V
in

+V
in

+V
in

+V
in

+V
in

+V
in

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D

G
N

D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D

G
N

D

+V
in

+V
in

G
N

D

G
N

D

+1
2V

SG
N

D
SG

N
D

+1
2V

Figure 3.4: Pinout of the Medusa power stacking connector.

64 digital I/O pins are completely unassigned, and the 64 power pins are assigned as

shown in Figure 3.4. By ganging together a large number of pins for the motor power

supply rails (+Vin/GND) this design supports up to roughly twenty amps of motor

current provided to each driver board. The connector also supports over one amp each

for the motor driver supply (+12V/GND) and control circuitry supply (+5V/SGND).

The two grounds, GND and SGND, should be connected together at an appropriate

star point on the control board.

Only one type of driver board has been designed for this system at the present

time, though it comes in two versions. This board, described in Section 3.2, can

control eight motors with moderate-current drivers. However, it would be straight-

forward to design new driver boards to meet the special needs of future robots. In

particular, a driver board with a smaller number of higher-current drivers would be

a very useful addition to the Medusa line. One version of this board is intended for

general use and the other is a connectorless version intended for use in Leonardo’s

head.

Two different control boards have been designed so far, one of which is available

in two form factors. The first board, designed for general use in small projects, uses

a standard PIC microcontroller as its main processor and accepts one driver board.

This controller, discussed in Section 3.3, features a standard RS-232 serial port and

additional power electronics which make it simple to use. The other control board,

discussed in Section 3.4, is designed for more sophisticated expressive robots such

as Leonardo. It features a more powerful soft-core-based controller architecture and

37

accepts two driver boards. However this control board is not based on a well-known

processor like the PIC, requires dual regulated power supplies, and only supports a

total of 10A continuous aggregate motor current. These drawbacks render this board

less appropriate for general use.

3.2 Eight-Channel Driver Boards

These eight-channel motor driver boards each provide eight channels of motor in-

terface hardware and can connect to any of the Medusa motor control boards. The

motor interface hardware consists of the motor driver itself and associated position-,

velocity-, and current-sensing circuitry. There are two versions of this board: the

standard model, which includes connectors for each motor, and a smaller model,

which uses pigtails to reduce connector volume. The smaller model was designed

specifically to address the extremely tight volume constraints faced inside the head

of Leonardo. The standard model also features one general-purpose user I/O line

per motor. Full schematics of both the standard model (part “SWMOT8”) and the

smaller model (part “SWMOT8s”) are provided in Appendix A.

3.2.1 Motor Drivers

The main purpose of this board is of course to drive DC motors, reversibly and with

adjustable voltage. This function is performed by a standard FET H-bridge. A

simplified schematic of the driver circuit is shown in Figure 3.6. Power MOSFETs

Q1–Q4 form a bridge, which can connect the motor to the motor supply voltage +Vin

with either polarity or force the motor voltage to zero. When transistors Q1 & Q4

are on and transistors Q2 & Q3 are off the motor sees the supply voltage with one

polarity; we shall refer to this, and the opposite configuration with Q1 & Q4 off and

Q2 & Q3 on, as the “enabled states” of the bridge. The motor voltage is forced

to zero when transistors Q2 & Q4 are on while Q1 & Q3 are off; we shall refer to

this as the “braking state,” since it can be used to resistively brake the motor. By

rapidly switching between these configurations the bridge can present any effective

average voltage in the range ±Vin to the motor. This process is known as pulse-width

modulation, or PWM, and is the cornerstone of most DC motor control.

The four digital control inputs (L/RHIGH & L/RLOW) cannot directly drive the

gates of the FETs, and so four gate drivers A1–A4 are needed. These are powered by

38

Figure 3.5: Top and bottom views of the Medusa eight-channel motor driver board.

a separate gate voltage supply +Vg, in this case 12V. Since +Vin may be higher than
+Vg, additional circuitry is needed to generate an even higher gate voltage with which

to turn on the high-side FETs Q1 & Q3. This is handled by bootstrap capacitors

C1 & C2 and diodes D1 & D2. Considering the left side of the bridge, this works as

follows. When Q1 is off and Q2 is on capacitor C1 is charged to approximately +Vg

relative to ground through diode D1. Then when Q2 is off and Q1 begins to turn on

the capacitor makes sure the positive supply of A1 remains roughly +Vg higher than

the source of Q1. As long as the value of C1 is sufficiently large the gate-to-source

voltage of Q1 can be held at roughly +Vg even when the source of Q1 is at +Vin,

i.e. when transistor Q1 is fully on.

Resistors R1 & R2 are current sensing resistors. Outputs LSENSE & RSENSE

run to a difference amplifier, and when the bridge is in either enabled state the output

of this amplifier will be proportional to the motor current. Current sensing will be

discussed in more detail in the next section.

On this board, the functions of gate drivers A1–A4 are provided by a single

monolithic bridge driver chip, the Linear Tech LT1162. This chip additionally ensures

that transistors Q1 & Q2 are never on simultaneously, nor are transistors Q3 &

Q4, since those conditions would result in an effective short-circuit between power

and ground and would have destructive consequences. Although this chip is very

39

Q2

Q1 Q3

Q4MOTOR

R1 R2

+Vin

A1

A2 A4

A3

+Vg +Vg

C1 C2

D1 D2
+Vg +Vg

LHIGH RHIGH

RLOWLLOW

RSENSELSENSE

Figure 3.6: Simplified schematic of the H-bridge motor driver topology used in the
eight-channel motor driver boards.

convenient and relatively compact, it does have one drawback: it is fabricated on a

legacy bipolar process, and so has very high quiescent current consumption. Since the

supply voltage requirements are relatively high, this results in a great deal of wasted

power, which presents a significant thermal problem for enclosed robots. Future

versions of this board should almost certainly replace this chip with a cooler-running

alternative, possibly based on a custom design using discrete components if no better

monolithic solution can be found.

There are several ways to drive a bridge of this sort. As discussed above, we want

to switch rapidly between two states with varying duty cycle. Which two states?

Clearly the first state must be the enabled state with the desired output polarity.

There are three reasonable possibilities for the other state: the opposite-polarity

enabled state, the disabled state (all transistors off), and the braking state. The

disabled state is not desirable because it forces the motor current to flow through

the FETs’ parasitic diodes, which will consume more power than switched-on FETs.

Using the opposite enabled state has the advantage that the H-bridge is then always

enabled, and therefore the current-sensing differential amplifier is always properly

40

measuring the motor current. However, switching to this state requires switching

all four transistors, whereas switching to the braking state requires switching only

two transistors. Since the FET gate capacitances are large and the required gate

voltages are high, this represents a significant difference in switching power and

a corresponding difference in heat generation. Perhaps more importantly, when

switching between the two enable states it is only possible to achieve exactly zero

output voltage through a precise balancing of the two states. The braking state

is clearly the preferred second state, though it forces a more complicated current

measurement, as discussed in the next section.

For these boards, the International Rectifier IRF7470 HEXFETs were chosen as

the power transistors because of their low RDS,on, their high current ratings, and their

small SO8 package. Sense resistors of 0.1Ω were installed; these resistors provide

decent current-sensing resolution at low currents, as discussed below. However, at

higher currents the voltage drop across these resistors will become undesirably large,

and since they are 1/16W resistors they will be destroyed if a current of more than an

amp is applied for too long. If higher average currents are needed then these resistors

can be reduced in value, or they can be replaced with jumpers if current sensing is

not required. The next factor limiting the motor current is the motor connector, a

Molex MicroFit 3mm connector rated for 5A. Sustained motor currents higher than

this are not supported by these boards.

3.2.2 Sensor Electronics

Each eight-channel motor driver board supports sixteen channels of analog-to-digital

conversion. One channel is wired to each of the eight motor connectors, and is

intended to be used for position feedback from a potentiometer, though these channels

could be used for other purposes if potentiometer feedback is not used in a particular

application. The other eight channels are connected to the current-sensing circuitry

of the eight motor drivers.

This current-sensing circuitry is diagrammed in Figure 3.7. The sense inputs

RSENSE & LSENSE come from the H-bridge, as shown in Figure 3.6. These inputs

are sent to a differential amplifier which generates a 2.5V-centered single-ended cur-

rent signal. This signal is then filtered by a simple RC low-pass filter (R1 & C1) to

isolate the remaining sensing circuitry from switching fluctuations and transients and

is then routed to an eight-channel multiplexer (A2). At sampling time, the filtered

41

RSENSE

LSENSE +2.5V

A2R1

C1

A1

R2

R3

A3

+2.5V

TO A/D

Figure 3.7: Simplified schematic of the current-sensing circuitry used in the
eight-channel motor driver boards.

signal from the selected channel is amplified by an inverting amplifier (A3, with a

gain of R3
R2

) and sent to the A/D for conversion.

As mentioned above, since the full motor current passes through the current sense

resistors (R1 & R2 in Figure 3.6) these resistors must be kept small or they will

introduce significant losses. However, they must not be made too small or the signal

will be swamped by noise and bias currents in the sensing circuitry. For the present

robots (Public Anemone and Leonardo) no individual motor is expected to consume

a current of more than about an amp, and even currents of that size are not expected

to last for very long. The sense resistor value of 0.1Ω is therefore acceptable; these

resistors produce a voltage of 0.1V at 1A, which is just barely negligible given the

12–24V intended operating voltage range. However, as discussed above, these 1/16W

resistors limit the allowed sustained current provided to each motor, and must be

replaced if higher continuous currents are expected.

In this design, the differential amplifier (A1) is a Texas Instruments INA152, which

has unity gain in the configuration shown. The signal that is sent to the low-pass

filter therefore has a range of approximately ±0.1V. Capacitor C1, which is actually

one element of a high-density capacitor array, was chosen to have value 0.1µF, the

largest value available in that package. The time constant of the filter is then set by

the value of R1 (which is also an element of a resistor array). In the original design it

was expected that the current sense signal would be relatively constant throughout

the PWM cycle, except at switching transitions, and so a value of 1KΩ was used, for

a filter cutoff frequency of 10KHz. As discussed below, this assumption is not correct

in all cases, and these resistors have been increased to 10KΩ (for a cutoff frequency of

42

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

35
36

37
38

39
40

41
42

43
44

45
46

47
48

49
50

51
52

53
54

55
56

57
58

59
60

61
62

63
64

E
N

C
A

0

E
N

C
A

1
E

N
C

A
2

E
N

C
A

3

E
N

C
A

4

E
N

C
A

5
E

N
C

A
6

E
N

C
A

7

E
N

C
B

0
E

N
C

B
1

E
N

C
B

2
E

N
C

B
3

E
N

C
B

4
E

N
C

B
5

E
N

C
B

6
E

N
C

B
7

PW
M

A
0

PW
M

A
1

PW
M

A
2

PW
M

A
3

PW
M

A
4

PW
M

A
5

PW
M

A
6

PW
M

A
7

PW
M

B
0

PW
M

B
1

PW
M

B
2

PW
M

B
3

PW
M

B
4

PW
M

B
5

PW
M

B
6

PW
M

B
7

PW
M

C
0

PW
M

C
1

PW
M

C
2

PW
M

C
3

PW
M

C
4

PW
M

C
5

PW
M

C
6

PW
M

C
7

PW
M

D
0

PW
M

D
1

PW
M

D
2

PW
M

D
3

PW
M

D
4

PW
M

D
5

PW
M

D
6

PW
M

D
7

U
SE

R
0

U
SE

R
1

U
SE

R
2

U
SE

R
3

U
SE

R
4

U
SE

R
5

U
SE

R
6

U
SE

R
7

A
D

C
L

K
A

D
C

S
A

D
D

A
A

A
D

D
A

C
M

U
X

A
M

U
X

B
M

U
X

C

Figure 3.8: Pinout of the SWMOT8/SWMOT8s digital stacking connector.

1KHz) in recent revisions. This provides a relatively clean signal for PWM frequencies

larger than 10KHz. The gain of the amplifier A3 can then be adjusted to take full

advantage of the 0–5V input range of the A/D converter. For Leonardo and Public

Anemone this gain is set to 20, mapping a current range of ±1A onto an input voltage

range of 2.5± 2V at the converter.

Depending on the H-bridge control method used by the control board, the con-

verted value may need to be further adjusted in firmware or software before it

correctly represents the motor current. If the second PWM state is either the reverse

enabled state or the floating state then no further adjustment is needed: one sense

resistor always sees the full motor current while the other sees no current, and so the

differential amplifier always outputs the correct value. However if the second PWM

state is the braking state, as is often desirable, then both sense resistors see the

motor current during the second phase. This increases the effective sensed current.

The sensed current Is and actual current Ia are related at a given PWM duty cycle

d by

Is = dIa + (1− d)(2Ia) =⇒ Ia =
1

2− d
Is .

This correction factor can be applied directly in firmware by any controller capable

of performing division, or it can be applied in software if the duty cycle being applied

at the time is also known.

Much like the eight current sensor signals, the eight potentiometer inputs are

low-pass filtered, multiplexed, buffered, and sent to an A/D converter. The only

43

difference is that the buffer has unity gain instead of large negative gain. A separate

A/D converter is used for the potentiometer inputs. The multiplexers are Texas

Instruments SN74LV4051, and the A/D converters are Texas Instruments ADS8320.

The ADS8320 is a 16-bit serial A/D converter capable of a 100kHz sampling rate.

Since each converter is responsible for converting eight channels, this system can

achieve a roughly 12kHz update rate per channel. Most controllers will operate at

a considerably lower control frequency, and so oversampling can be used to improve

the signal-to-noise ratio.

In addition to these analog feedback channels, this board also routes three digital

I/O lines from the control board to each of the motor connectors. Two of these are

intended to be connected to a quadrature encoder attached to the motor, though

they may be reclaimed for other uses if encoders are not required in a particular

application. The actual processing of the quadrature encoder signals is left to the

digital control board. The third line could be connected to an index encoder or used

for any other purpose. This general-purpose line is omitted from the smaller S-model

boards for space reasons.

The control signals for all the circuits described above are routed to the digital

stacking connector, with the pinout shown in Figure 3.8. Pins PWMxx are the

H-bridge control lines, pins MUXx are the analog multiplexer channel-select lines,

pins ADCLK and ADCS control the A/D converters, pins ADDAA and ADDAC

are the serial outputs from the pot and current A/D converters, and pins EN-

CAx/ENCBx/USERx are the digital I/O lines. The pinouts of the motor connectors

are shown in Figure 3.9. Pins MOTA and MOTB are the motor outputs, the POT pin

is for the potentiometer input, pins ENCA and ENCB the digital inputs intended for

quadrature encoders, and pin USER (present only on the SWMOT8) is the general-

purpose digital I/O pin. The +5V and GND pins provide access to a five-volt

power supply with which to power the potentiometer, encoders, or other low-power

electronics as needed.

3.3 PIC-Based Single-Port Controller

The PIC-based single-port control board was designed to be easy to use for a wide

range of small robotics applications. It features a standard RS-232 serial port with a

female DB9 connector for easy connection to a host PC. It also features a a single high-

44

1
2
3
4
5
6
7

MOTA

MOTB

ENCB
ENCA
SGND
+5V
POT

POT USER
ENCA ENCB

MOTA MOTB
+5V GND1 2

3 4
5 6
7 8

Figure 3.9: Pinout of the SWMOT8 (left) and SWMOT8s
(right) motor connectors.

current power connector which accepts any motor voltage in a wide range (roughly

5V to 30V, depending on the specific driver hardware chosen) and generates all

internal supply voltages from this one input. At the core of the board is a Microchip

PIC16F877, a microcontroller which was selected because it is used frequently around

the MIT Media Lab. An FPGA connects the microcontroller to the digital stacking

connector, isolating it from the details of managing the hardware on the driver board.

This FPGA can also act as a math coprocessor, allowing the use of more sophisticated

control algorithms than could normally be implemented in this processor. A full

schematic of this board can be found in Appendix A.

3.3.1 Power Conversion

One of the primary design goals for this board was that it support a wide range

of motor supply voltages without requiring a separate power supply for the control

circuitry. Neither 5V nor 24V DC motors are uncommon, and so this voltage range

(with a little headroom on the high end) was chosen as the allowable input range.

Any Medusa control board is required to generate a 12V supply rail for the power

stacking connector, and so a power converter was needed that could step the motor

voltage either up or down. A single-ended primary-inductance converter (SEPIC) is

capable of performing exactly this function.

A simplified schematic of the SEPIC converter used in this board is shown in

Figure 3.11. When transistor Q1 is on it charges up inductor L1, and when it is

switched off that energy is dumped through capacitor C1 and diode D1 onto the

output capacitor C2. This is much like the operation of a standard boost converter;

however, capacitor C1 breaks the direct current path from input to output and permits

45

Figure 3.10: The Medusa PIC-based single-port control board.

the output voltage to fall below the input voltage. Inductor L2 is then needed to

provide a DC current path to the output. By varying the duty cycle of the SWITCH

input, the output voltage can be varied over a large range from well below to well

above the input voltage. In particular, it is easy to show that with no load the output

voltage is given by

Vout =
d

1− d
Vin ,

where d is the duty cycle of transistor Q1. The output voltage is measured and the

duty cycle is then adjusted to compensate for variations in the load.

In the actual design the switching transistor Q1 is internal to a monolithic SEPIC

controller chip, the Linear Technologies LT1370. This part provides all the feedback

control needed to generate a steady output voltage using this topology. The inductors

are Cooper DR74-470 47µH inductors with a maximum current of 1.1A. This is the

limiting factor in determining how much current may be drawn from the 12V supply

generated by this converter. If the input voltage is above 12V then the output current

may be as large as an amp, but this current is derated for proportionally for lower

input voltages.

46

L1 C1

L2

D1

Q1
C2

+Vin +Vout

SENSE

SWITCH

Figure 3.11: Simplified schematic of the SEPIC power converter used in
the PIC-based single-port controller.

Once a stable 12V rail has been generated it is then used to generate the other

required voltages. First a simple buck converter is used to efficiently generate a 5V

rail. A simplified schematic of this circuit is shown in Figure 3.12. As transistor Q1

is switched on and off, diode D1 correspondingly switches off and on. This results

in a reduced average voltage which is losslessly filtered by inductor L1 and output

capacitor C1. In this circuit, as in the SEPIC converter, the switching transistor is

included as part of a monolithic converter package, here the Linear Tech LT1474. The

inductor is a Cooper DR74-151 150µH inductor, which sets the maximum allowable

output current to about half an amp. However, if this much current were drawn

from this converter it would require a current draw of about 1.2A from the SEPIC

converter, which is not allowed. Therefore the load on the 5V converter must be

kept rather lower than .5A. In practice it will usually be on the order of 100mA,

roughly the load presented by the control board’s own electronics, since the motor

driver board is unlikely to require much current from this supply.

Two linear regulators generate 2.5V and 3.3V rails needed by the FPGA from

this 5V rail. The current demands at those voltages are quite low, and so additional

DC/DC converters were not required.

3.3.2 Controller Architecture

As described above, the basic controller architecture in this board consists of a PIC

microcontroller accompanied by an FPGA. The FPGA configuration data is stored

47

L1

D1 C1

+Vin +Vout

SWITCH

Q1 SENSE

Figure 3.12: Simplified schematic of the buck power
converters used in the PIC-based single-port controller and
the FPGA-based dual-port controller.

in a one-time-programmable PROM; the intention is for each board to be configured

once for use with a particular type of motor driver module. The two boards could

then be given to the end user, who need only worry about programming the PIC for

the final application. A standard set of PIC libraries could be developed along with

each driver board which would allow even a novice PIC programmer to control the

FPGA and motor hardware without trouble.

The core microcontroller, a PIC16F877, has 31 user I/O pins. Of these, 18 are

connected directly to the FPGA, intended for use as an eight-bit data bus with six

address lines and four control lines. If the four control lines are used as Read, Write,

Reset, and High/Low signals then this bus has an address space of 64 16-bit words.

Two PIC pins are used by the PIC’s hardware UART to communicate over the serial

port to the computer, two control two status LEDs, and eight of the remaining nine

are routed to an external connector for use as general-purpose digital I/O lines and

up to five low-resolution analog inputs.

The FPGA is a Xilinx XCV100 Virtex, chosen largely because it was already in

stock as a prototyping tool for the FPGA-based control board described in the next

section. This FPGA has a low-power 2.5V core, but is configured in this board to

use 5V-compatible 3.3V inputs and outputs. This makes it possible for the FPGA to

communicate directly with standard 5V parts on the motor driver board as well as

with the PIC without additional interface hardware. The 31 control lines from the

PIC and the 64 control lines to the motor driver board consume virtually all of this

part’s I/O pins.

48

TMS
TDI
TDO
FTCK
GND
+5V

PGD
PGC
GND
/MCLR

1
2
3
4
5
6

1
2
3
4

Figure 3.13: Standardized programming connectors for
PICs (left) and FPGAs/CPLDs (right).

Both the PIC and the FPGA receive a 20MHz clock from a free-running oscillator.

With this clock the PIC operates at an instruction rate of 5MHz, at which speed it

takes approximately 1.6µs to execute a 16-bit bus read and 3.4µs to execute a bus

write. With the FPGA acting as a math coprocessor, a 16-bit binary operation then

takes about 6.6µs. A 16-bit software multiply operation would take roughly ten times

as long: using the FPGA as a coprocessor makes it possible to use a single PIC to

implement standard control algorithms like PID on multiple channels simultaneously,

a feat which would otherwise be possible only at very low control frequencies.

All other details of how to use this board are left up to the firmware designer. An

example combination of FPGA and PIC firmware is described in the next chapter.

However, this hardware is extremely flexible and could be used in a variety of other

ways. In particular it could be operated fully autonomously, with no external com-

puter and with a small amount of sensor data being supplied over the general-purpose

I/O connector. The PIC’s hardware SPI port is accessible via that connector, and so

a relatively sophisticated sensor suite could be connected directly as well. The user

would only be required to modify the PIC code in such a design; the FPGA code

could be used as-is to manage the motor driver hardware.

Both the PIC and FPGA have in-circuit programming headers; these headers are

standard across the Medusa line, and the pinouts are given in Figure 3.13. Both are

Molex Micro-Minniature 1.25mm wire-to-board connectors. The FPGA programming

header is only to be used for code development; configuration data provided via this

header is lost when power to the FPGA is turned off. Once the final FPGA code

is complete, it should be burned into a configuration PROM (Xilinx XC17V01) and

installed on the board.

49

Figure 3.14: The Medusa FPGA-based dual-port control board (standard model).

3.4 FPGA-Based Dual-Port Controller

The other control board which has been developed so far was designed specifically

to meet the unusual needs of Leonardo. It can control a large number of motors in

a small volume with flexible control logic, but it does not support high aggregate

currents. The design is similar in many respects to the design of the PIC-based board

discussed in the previous section. A Xilinx Virtex FPGA (here an XCV800) connects

to the digital stacking connectors, and the FPGA again has a 2.5V core with 5V-

compatible 3.3V I/Os. The 5V, 3.3V, and 2.5V supply rails are all generated from

the 12V rail using buck converters just like the one described in the previous section.

There are however several important differences between the two control boards.

This board can accept two motor driver modules, allowing it to control twice as many

motors as the previous controller. Further, this board uses RS-485 instead of RS-232,

allowing for reliable higher-speed communication with the host PC or intermediate

hardware. The board’s power and communications connectors were chosen to be

small enough to pass through the tight spaces in Leonardo’s neck; as a result, the

total continuous motor current supported by this control board is limited to only

10A. (This is not a problem for Leonardo, which uses four of these controllers and

draws less that ten amps in its entirety.) Since the volume and complexity of a SEPIC

converter was undesirable in Leo’s head, this board does not have one; instead, it must

be provided with a regulated 12V power supply. The pinouts of the two connectors

(both Molex MicroFit 3mm connectors) are shown in Figure 3.15.

50

Vin

1
2
3
4

1
2
3
4
5
6

+12V

RX+

RX-

TX+

TX-

Figure 3.15: Connector pinouts for digital power and
RS-485 (left) and motor power (right) for the FPGA-based
dual-port controllers.

By far the most important difference between the two boards is that there is

no traditional microcontroller present in this design. Instead the FPGA is quite

large, allowing the firmware designer to use a soft-core processor appropriate to the

application. Though a high-performance commercial processor could certainly have

been used instead, the board needed a large FPGA to manage the large number of

digital I/O pins on the two stacking connectors anyway, and the benefits of added

flexibility were deemed greater than the drawbacks associated with the increased

FPGA design complexity. One example controller , based on a simple custom soft-core

processor, is described in the next chapter; this controller firmware is presently being

used to with Leonardo. As open-source soft cores improve in reliability, performance,

and usability, these could be introduced and modified to suit the needs of motor

control.

The configuration data for this large FPGA consumes over four megabits, and so

it will not fit in a standard serial EEPROM. Instead, this board uses flash memory

(Intel 28F160C3) to store the configuration data. This memory has a 16-bit parallel

data bus, and so some glue electronics is needed to configure the FPGA with it at

power-up. An auxiliary CPLD, which is in many ways similar to a small FPGA

but which retains its configuration permanently after programming, performs this

function. The CPLD can clock the configuration data out of the flash and present

it to the FPGA via the FPGA’s 8-bit SelectMAP programming interface. Both the

FPGA and the CPLD also have JTAG programming ports, with the standard pinout

shown in Figure 3.13. When the board is first configured, both the FPGA and CPLD

must be programmed via these connectors. The user may then upload the desired

51

Figure 3.16: The Medusa FPGA-based dual-port control board (smaller S-model).

FPGA configuration via the serial port; the FPGA receives this data and instructs

the CPLD to load it into flash. This port also offers the FPGA developer a much

faster method of testing FPGA code than uploading it to the flash each time.

This board is available in two form factors. The first, shown in Figure 3.14, is a

larger design which was developed originally for testing and which is easier to work

with in situations where volume is not an issue. It accepts both motor driver modules

side-by-side on the top of the board. This larger version has been used for testing

to control all of Leonardo, and will continue to be used to control Leo’s body and

arms. The second version, shown in Figure 3.16, is much smaller. It is accepts one

motor driver module on each side in a sandwich configuration. This board can be

used in conjunction with the smaller S-model eight-channel motor drivers to achieve

the extremely high controller and driver densities needed inside Leo’s head.

52

Chapter 4

Medusa Firmware

This chapter describes the firmware which has been written to date to control the

hardware described in Chapter 3. This code was developed for three reasons: to

test the hardware, to make it possible to put the hardware to immediate use, and

to provide examples for future firmware authors. Early versions of the firmware

described here were used to control the Public Anemone, and the most recent version

is currently being used inside Leonardo.

This chapter describes a large amount of code written for five devices. There

is far too much code to describe it in full detail here; this chapter is intended

only as an introduction. For more complete documentation of this code and the

complete source of the most recent version see the project website, which can be

found at http://robotic.media.mit.edu/motor/. More importantly, this code is

continuously being improved; the website will also document the most recent versions.

4.1 PIC-Based Controller

The PIC-based controller described in Section 3.3 has two devices that must be

programmed for it to operate, the PIC microcontroller itself and the support FPGA.

The FPGA must be programmed to interface to whatever motor driver hardware is

going to be attached, and it may also be programmed to provide additional math

co-processing features. The PIC must then be programmed according to the needs of

the particular application.

In this section we will present example firmware for both devices. The FPGA

firmware discussed here is designed for use with the eight-channel motor driver board

53

• main — Peripheral bus controller.

• analog — Controls SN74LV4051 muxes and ADS8320 A/D converters.

• decoders — Contains eight quadrature decoders and bus logic.

• simpledec — Quadrature velocity decoder module.

• pwmmod — Contains eight PWM generators and bus logic.

• pwmgen — PWM generator module for H-bridge control.

• mult16 — A 16-bit hardware multiplier core.

Table 4.1: Structure of the example Verilog code for the support FPGA on the
PIC-based single-port motor control board.

described in Section 3.2. It also provides a hardware multiplier for use by the PIC.

The PIC firmware implements eight general-purpose PD-controllers under the control

of a host computer via the serial port.

4.1.1 Support FPGA

The support FPGA must perform a variety of tasks to manage the attached eight-

channel motor driver board. Most importantly it must generate the control signals

for the H-bridge driver chips, operate the analog multiplexers and A/D converters,

and interpret the signals coming from the motor encoders. In order to program an

FPGA to perform these sorts of logic tasks, one must first describe the tasks using a

Hardware Description Language (HDL). This example code was developed in Verilog

HDL (not to be confused with the Ada-like alternative language VHDL). Like any

HDL, Verilog allows the programmer to define a logic module and then to instantiate

that module any number of times in the definition of other modules. Each module can

then be kept relatively simple and easy to debug. A top-level module, instantiated

once, connects the other modules to each other and to the outside world. The module

hierarchy for the support FPGA code described here is shown in Figure 4.1.

The analog, simpledec, and pwmgen modules each provide an interface to some

of the control hardware on the motor driver board. For example the simplest module

is the pwmgen module which generates the PWM control signals used to control an H-

bridge as described in Section 3.2.1. We shall discuss this module in detail to provide

an example of how such a module may be constructed. The code for the module is

shown in Figure 4.1. The main inputs are a clock, a 10-bit counter rolling over at the

54

module pwmgen(CLOCK,RESET,COUNTER,PWMVAL,DIR,TPWMA,BPWMA,TPWMB,BPWMB);

input CLOCK; // Clock input
input RESET; // Active-high reset line
input [9:0] COUNTER; // 10-bit counter rolling over at PWM freq.
input [9:0] PWMVAL; // 10-bit desired PWM value
input DIR; // Desired PWM direction
output TPWMA; // Controls left high-side FET
output BPWMA; // Controls left low-side FET
output TPWMB; // Controls right high-side FET
output BPWMB; // Controls right low-side FET

reg [9:0] pwmreg; // 10-bit PWM value being used this cycle
reg dirreg; // PWM direction being used this cycle
reg negpwm, pospwm; //
wire pwm;

/* Latch PWM value during the dead time */
always @(posedge CLOCK or posedge RESET) begin

if(RESET) begin
pwmreg <= 0;
dirreg <= 0;

end
else if(COUNTER == 10’h3F0) begin

pwmreg <= PWMVAL;
dirreg <= DIR;

end
end

/* Compare on both clock edges to increase resolution */
always @(negedge CLOCK) negpwm <= (COUNTER<pwmreg && !&COUNTER[9:5]);
always @(posedge CLOCK) pospwm <= (COUNTER<pwmreg && !&COUNTER[9:5]);
assign pwm = negpwm & pospwm;

/* Set the four H-bridge control lines accordingly */
assign BPWMA = dirreg ? 1 : ~pwm;
assign TPWMA = dirreg ? 0 : pwm;
assign BPWMB = dirreg ? ~pwm : 1;
assign TPWMB = dirreg ? pwm : 0;

endmodule

Figure 4.1: Verilog PWM generator for the FPGA pwmgen module.

55

Figure 4.2: PIC-FPGA host bust 16-bit write cycle.

desired PWM frequency, a 10-bit value indicating the desired PWM duty cycle, and a

bit indicating the direction of output. The module then generates the a PWM signal

by constantly comparing the counter to the requested duty cycle and uses the result

of this comparison, along with the direction indicator, to generate the four control

signals needed by the bridge driver.

The H-bridge driver design used by the driver boards requires that the bridge be

turned off for at least a brief interval once per cycle; if it is held on for too long the

bootstrap capacitor will discharge and the bridge will fail to operate properly. The

maximum duty cycle that this module will generate is 0x3E0/0x400≈97%. During

the dead time the module also latches the values of duty cycle and direction that it

will use for the next cycle. This prevents output glitches even when the inputs are

changed mid-cycle.

Another potential source of output glitches is the comparator itself. There may be

glitches on the comparator output each time the counter value increases, because of

differences in combinatorial path delays. Therefore the output cannot be used directly

as a PWM signal, but must be synchronously sampled instead. This sampling is done

on both rising and falling clock edges, allowing the counter to increment as fast as

twice the clock frequency and supporting correspondingly high PWM frequencies.

The counter must be provided as an input instead of simply being generated in

the module so that multiple instances of the pwmgen module may be used without

counter duplication. While it is likely that the synthesis or implementation tools

56

Figure 4.3: PIC-FPGA host bust 16-bit read cycle.

would optimize out such duplicate counters, optimizations of this sort are easy to

include directly in the design.

The simpledec module is a similarly-simple module which measures a motor’s

velocity using the signals from a quadrature encoder. The decoders and pwmgen

modules provide bus-style access to eight simpledec modules and eight pwm modules

respectively, one of each for each motor channel. The analog module controls the

analog multiplexers and A/D converters, sampling the motor positions and currents

using 8× oversampling. The mult16 module describes a multiplier taking two 16-bit

multiplicands and generating the 32-bit product. This multiplier is intended to be

used by the PIC to improve its computational performance. Modules of this sort are

easy to generate using the Xilinx CORE Generator software tool.

Each of the internal modules was designed with a 16-bit peripheral bus interface,

while the PIC uses an 8-bit host data bus. Therefore the top-level module (main)

implements an 8-to-16-bit bus converter. The host uses control pin HI/LO to select

whether it is accessing the high or low byte. For read operations the converter latches

the data to be read on the rising edge of HI/LO, while for write operations the high

byte is buffered in the converter and a peripheral bus write can be initiated only the

when HI/LO is low. Thus all host bus operations must proceed high-byte-first. The

timing diagram for a host bus write is shown in Figure 4.2, while the timing diagram

for a bus read is shown in Figure 4.3.

57

0 7 8 15

Motor Position0x00
{

Position Filter Bits0x02
{

Motor Velocity0x04
{

Motor Current0x06
{

Target Position0x08
{

P Gain Constant0x0A
{

D Gain Constant0x0C
{

Encoder/Position “Gain”0x0E
{

Figure 4.4: PIC communications memory layout.

4.1.2 PIC Firmware

The example PIC firmware implements a PD controller for each motor as well as

position estimation filters and code to communicate with the host PC via the serial

port. The code can be loosely divided into three sections: FPGA interface code,

serial communications code, and the main filter and control loop. At present all three

pieces have been written directly in PIC assembly language. However it should be

possible to incorporate the first two into an assembly library for use with a PIC C

compiler so that the main control code can be rewritten (and later modified by end

users) in C.

The FPGA interface code implements the bus protocol shown in Figures 4.2

and 4.3. It provides a number of macros to simplify bus access using both direct

and indirect PIC register addressing. Each 16-bit word must be stored across two

PIC registers since the PIC is an 8-bit processor; these libraries adopt a big-endian

storage convention. The library also includes a number of other basic routines

for manipulating 16-bit values within the PIC and performing some simple 16-bit

mathematical operations. See the library sources for documentation of these utility

macros.

The serial communications code is responsible for communicating with the host

computer via the asynchronous serial port. It uses the PIC’s hardware UART to

relieve the processor of the burden of handling each individual bit. This code resides

58

0xA5 Set
Type

Get
Type0x00

{
Channel 1 Value0x02

{
Channel 2 Value0x04

{
...

Channel 8 Value0x10
{

Checksum0x12
{

Figure 4.5: PIC communications packet format.

entirely within the PIC’s interrupt service routine, providing a clean separation

between the serial code and the main control code. Communications between the

two modules is handled through a block of shared memory. When the control code

wishes to perform a non-atomic access to this memory block, such as any 16-bit

access, it must disable interrupts for the duration of the operation. The control code

must be designed with the assumption that the contents of the shared memory block

may change at any time.

The shared memory consists of eight eight-word slices, one for each motor channel.

Communication with the host PC takes the form of read and write operations on a

all 16-bit words at a particular offset into each slice. For instance, the host PC may

send the controller a command simultaneously updating the first two bytes of each

shared memory slice and requesting that the contents of the third and fourth bytes

of each slice be sent back in response. The code assigns a particular meaning to each

word position within a slice; these assignments are shown in Figure 4.4. As the main

control code measures and calculates the motor positions, velocities, and currents it

stores these in the shared memory in the given locations. Likewise at each tick the

code uses the given values for the target positions and controller gains.

The commands and responses are sent over the serial port using the simple 19-

byte packet format shown in Figure 4.5. A header byte (with fixed value 0xA5) and

a checksum allow each receiver to reliably separate the received byte stream into

packets. A type byte contains both the write offset Set Type and the read offset

Get Type. These specify at what offset into each slice the given values are to be

written and from what offset the response values are to be read. The PIC echoes the

59

type field in the response packet. The 8-bit Checksum is a simple twos-complement

sum of the remaining bytes of the packet, excluding the fixed header byte. After the

host PC has configured the various control gains, normal communications will likely

consist primarily of packets of type 0x08, updating the controllers’ target positions

and requesting measured motor position values in return.

The PIC’s serial UART is configured for operation at 56 kbaud with eight data

bits, one start bit, one stop bit, and no parity bit (57600:8N1). At full speed this

configuration supports roughly 300 serial packets per second per direction. However,

if the host PC were to attempt to communicate at the full rate it is likely that

received packets would be periodically corrupted due to clock drift between the PC

and the PIC. To prevent this, a host PC wishing to send back-to-back packets should

insert one padding character with any value other than 0xA5 after each packet. This

increases the effective transmit packet size to 20 bytes, and so the maximum reliable

communications rate is reduced to roughly 288 packets/sec. Higher baud rates are in

general not reliably supported with RS-232.

Moving now to the main filter and control code, we will first discuss the posi-

tion estimation filters. These are relatively simple filters which estimate the motor

position using the redundant data provided by the potentiometers and encoders.

Potentiometers are notoriously noisy when in motion. They also have an inherently

large output resistance, and so the switching noise associated with both the motor

PWM and the quadrature encoders couples efficiently onto the pot sensor lines unless

they are very carefully shielded. Encoders, on the other hand, provide excellent

velocity measurement but cannot measure absolute position at all and are susceptible

to drift when used as relative position sensors.

The filter works in the following way. The potentiometers yield a measured

position trajectory qm[t] which is noisy. The encoders yield a measured velocity tra-

jectory q̇m[t] which is quite good. The estimated position trajectory q[t] is computed

according to

q[t + 1] = (1− α)(q[t] + βq̇m[t + 1]) + αqm[t + 1] . (4.1)

This filter has two parameters, α and β. If we set the measured velocity to zero then

this filter reduces to a simple first-order IIR low-pass filter on the measured position

data and the parameter α adjusts the cut-off frequency. However, in order to greatly

attenuate noise the cut-off frequency must be placed well into the frequency range of

interest, around 1-10Hz, which would render virtually any simple controller unstable.

60

This situation is easy to remedy: if we assume we knew the position at the previous

time step, and if we assume that our velocity measurement is accurate, then we can

accurately predict the position at the present time step through the introduction of

the βq̇m term. The parameter β is of course set equal to the sampling time T . We

now have a predictive filter, and the parameter α adjusts our relative faith in the

prediction (derived from the encoders) and the direct measurement (derived from the

potentiometer).

The position and velocity are measured in incompatible units derived from the

properties of the potentiometer and the encoder. The parameter β must therefore

also include a conversion factor between the two unit systems. This value must be

configured by the user much like the controller gains, and so it is referred to in the

code as the “Encoder/Position Gain” or “E Gain” even though it is not strictly a

feedback gain. It is straightforward to determine the correct value empirically: if the

value is too high then the controller will undershoot at first, and if it is too high the

controller will overshoot. The parameter α has hard-coded value of 2−8 in this design,

giving the filter a cut-off frequency around 4Hz. With α fixed at a power of two the

entire filter can be implemented using only a single true 16-bit multiplication, namely

the multiplication of the measured velocity by β.

Now that the controller has an accurate estimate of both the motors positions (q)

and the velocities (q̇m), we can implement a control law which moves the motor to

the desired target position qt. The example code implements a simple PD controller

of the form

y[t] = Kp(qt[t]− q[t])−Kdq̇m , (4.2)

where y is the signal to be sent to the motor and Kp and Kd are adjustable gain

constants. This is a standard controller type which is often used to control systems

which are reasonably well-behaved. It lacks an error-integrating term, and so it cannot

fully compensate for steady-state external forces, such as gravity. Nevertheless it is

often quite sufficient in situations where extreme precision is not a design requirement.

If the main control code were to loop as quickly as possible, beginning a new cycle

as soon as the previous one finished, then minor variations in loop execution time

would cause variations in controller performance and potential system instability.

To prevent this, the example code uses one of the PIC’s hardware timers to trigger

the start of a control cycle every approximately 750µs. Some of this time will be

spent in the interrupt service routine handling received serial bytes, but the filter

61

Figure 4.6: High-level processor and memory architecture used in the
example FPGA code for the FPGA-based dual-port motor control board.

and control code will certainly be allowed 500µs per cycle. The code must access the

measured position, velocity, and current values, write the pwm values, and perform

three hardware-assisted multiplications per channel; bus access therefore occupies

consumes almost half of the control loop’s processing time. There is just enough

time leftover to consider simple extensions to the control law, such as an integrating

control term. Substantially more complex control laws cannot be supported by this

control framework at such fast update rates.

4.2 FPGA-Based Controller

The FPGA-based dual-port control board described in Section 3.4 has no microcon-

troller. Instead, it has a single large FPGA which is responsible for all aspects of the

board’s operation. This provides the user with an extremely flexible control frame-

work with potentially high computational performance, but it requires a considerably

more sophisticated FPGA program than the one described in the previous section.

In addition to the FPGA, the board has a smaller CPLD whose responsibility is

programming the FPGA with configuration data stored in flash memory. This part

must also be programmed in an HDL such as Verilog, just like the FPGA. However

this code is extremely simple by comparison: it need merely read data bytes out of the

flash one at a time and present them to the FPGA, incrementing an address counter

until programming is complete. We will not discuss the details of this CPLD code

any further here.

62

• main — Top-level processor architecture.

• memory — Dual-port data and program memory.

• packetrx — Processes received data packets.
• serialrx — Serial byte receive module.

• packettx — Generates data packets for transmission.
• serialtx — Serial byte transmit module.

• periphmod — Peripheral bus controller.

• analog — Controls SN74LV4051 muxes and ADS8320 A/Ds.

• decoders — Contains sixteen quadrature decoders and bus logic.
• simpledec — Quadrature velocity decoder module.

• pwmmod — Contains sixteen PWM generators and bus logic.
• pwmgen — PWM generator module for H-bridge control.

• procalu — Processor Arithmetic Logic Unit (ALU).

Table 4.2: Structure of the example Verilog code for the main FPGA of the
FPGA-based dual-port motor control board.

4.2.1 FPGA Code Overview

There are many possible structures for a motor controller implemented in an FPGA.

For instance, a näıve design might route the sensor inputs directly to multipliers,

adders, and so forth, and then route the results of that computation directly to

the PWM outputs. Unfortunately, such a design would rapidly consume all the

resources of an FPGA—even one as large as the Virtex XCV800 present on these

boards—because of the large size of complex computational units such as multipliers.

Moreover, in a design of that sort any change in the control structure would require

re-synthesis and re-implementation of the code, which may take on the order of an

hour for a complex design.

To address the first problem, a design can incorporate only a limited number of

computational units, and the data can be routed between them as needed. This

technique is known as microsequencing. To solve the second problem, the user can be

allowed to specify the manner in which the data is routed between the computational

units at run-time. A flexible microsequenced architecture which interprets user-

specified sequencing commands one after the other is nothing other than a micro-

processor. That is, the most sensible FPGA code structure for flexible motor control

consists of a processor surrounded by peripherals which operate the hardware. This is

63

0xA50x00
{

Address [Response]0x01
{

Word 1 Value0x02 or 0x03
{

Word 2 Value0x04 or 0x05
{

...

Word 16 Value0x20 or 0x21
{

Checksum0x22 or 0x23
{

Figure 4.7: FPGA communications packet format. The
Response byte exists only in packets sent to the FPGA.

essentially the same structure as that used in the PIC-based control board discussed

earlier, except the processor has been moved inside the FPGA and the slow 8-bit bus

has been eliminated. The example design discussed here adopts this structure.

The parallels between this design and that developed for the PIC-based controller

go beyond broad structural similarity. The peripheral code developed for the PIC-

based controller’s support FPGA is used almost as-is in this design; it has been

modified to support two eight-channel motor control boards instead of only one, but

this modification is straightforward and we will not discuss these modules any further

here. Communications with the host PC is also handled similarly in the two designs.

The packet reception and transmission modules operate entirely independently of the

main processor, exchanging data with the processor through a large shared memory

block. Even the internal processor architecture, discussed in the next section, is

patterned after the architecture of the PIC microcontroller line.

The module hierarchy for this code is given in Figure 4.2. The communications

modules packetrx and packettx implement packet reception and transmission using

a serial UART consisting of a a reception module serialrx and a transmission

module serialtx. The periphmod module and the other modules contained in

it correspond to the support FPGA in the PIC-based design, though without the

additional math coprocessing features which are not needed here. The remaining

modules (main, memory, and procalu) contain the processor itself and associated

memory and bus control logic. The basic system design, shown in Figure 4.6, consists

64

0x00
... Reserved

0x1F

0x20
... Data Memory

0x3F

0x40 Control

0x41
... Reserved

0x7F

0x80
... Program Memory

0xFF

Figure 4.8: FPGA serial communications address space.

of a processor attached to separate program and data busses. This is known as a

Harvard architecture, and offers higher and more predictable performance than the

alternative von Neumann architecture based around a single memory bus. Many

DSP and embedded controllers, including the PIC microcontrollers, use a Harvard

architecture for this reason.

The Xilinx Virtex FPGAs, such as the XCV800 used here, include blocks of dual-

port memory known as SelectRAM. The memory module contains a four-kilobyte

region of these blocks to be used for program memory and a one-kilobyte region

to be used for data memory. One port of each block is provided to the processor,

via the program and data memory busses, and the other is provided to the serial

communications modules. The host computer can therefore modify the controller’s

program code, configure various parameters in data memory, or read the contents of

that memory, all without interrupting the processor in any way.

Communications over the serial port uses a packet format very similar to the one

used by the PIC-based controller. This format is shown in Figure 4.7. The packet

65

format is slightly different for the two directions of communication. When the host

PC sends a packet to the FPGA, it specifies the address range of memory to write

(Address) as well as the address range of memory which the FPGA should send back

in a response packet (Response). When the FPGA issues the response it specifies the

address range of the data contained in the packet, but the Response field is missing.

The response packets are therefore one byte shorter than the originally-transmitted

packets, avoiding the problems encountered in the PIC-based design associated with

PC and controller clock drift. It is important to note that the word values appear in

the packet low-word-first, but that each value is represented with big-endian (high-

bit-first) bit order.

The address space seen by the host computer consists of 256 blocks each containing

sixteen 16-bit words. A map of this address space is shown in Figure 4.8. Here

program and data memory appear as part of a single address space, though the

processor internally accesses them via two separate busses. The Control word allows

the host PC to exert high-level control over the processor; at present the only bit

used is the low bit, which acts as a processor enable bit. This bit is used to halt the

processor’s execution when the host PC wishes to modify the contents of program

memory. This is especially important at power-up, when it prevents the processor

from executing until the control program has been loaded.

The processor sees this memory in an entirely different way. The data memory

space is of course separate from the program memory space as far as the processor

module is concerned. Further, the address space of the processor’s data bus must

contain not only the shared data memory but also the various motor peripherals.

The memory bus is sixteen bits wide, and therefore requires an 11-bit address bus.

The data bus is also sixteen bits wide, and has a 10-bit address bus. The upper half

of this data memory space is general-purpose RAM shared with the communications

system, while the lower half contains the peripherals. This processor data address

space is shown in Figure 4.9. For simplicity, the peripherals may also be thought

of as occupying the first reserved block of the serial communications address space

as well, in which case the processor data address space corresponds precisely to the

first quarter of the serial communications address space. However it is not actually

possible to access these peripherals directly from the communications modules.

66

0x000–0x00F Measured Positions

0x010–0x01F Measured Currents

0x020–0x02F PWM Command Values

0x030–0x03F Measured Velocities

0x040–0x0FF Reserved
...

0x100–0x10F Processor Control

0x110–0x1FF Reserved
...

0x200–0x2FF Main Data Memory
(Shared with the serial

communications modules)
...

Figure 4.9: FPGA processor data address space.

4.2.2 Soft-Core Processor

The processor at the heart of this architecture is based loosely on the PIC microcon-

troller line. This similarity should help ease ease the transition from one to the other

for future programmers. The processor has a simple RISC architecture; the execution

of each instruction is straightforward, but the instruction set is powerful enough to

allow sophisticated computation. A diagram of the processor architecture is shown in

Figure 4.10. This simplified diagram omits the control lines running from the output

of program memory to virtually every part of the processor. In particular, various

bits of each instruction are used to control the three multiplexers, the Arithmetic

Logic Unit (ALU), and the write enable lines for the registers and data memory.

Readers familiar with PIC microcontrollers will recognize many features of this

architecture. Like all processors, it includes a special Program Counter register (PC)

which increments once per instruction unless instructed otherwise. The output of this

register selects the address of the next instruction to be executed. In addition to the

control bits mentioned above, the instruction specifies an address in data memory and

may also specify a literal value to be passed directly to the ALU. Each instruction

67

Figure 4.10: Simplified diagram of the processor
architecture used in the example FPGA code for the
FPGA-based dual-port motor control board.

only contains one memory address, and so normally binary memory operations must

take advantage of a special register, known as the Accumulator (W). The first input

of the ALU is always the output of data memory, and the second input can be either

the contents of W or a literal value included in the instruction. The ALU then

performs a chosen arithmetic operation on the two values and presents the result at

its output, which is routed back to data memory and to the accumulator among other

places. One of those destinations will in general have its write enable activated for

each instruction.

An additional special register, known as the File Select Register (FSR), is provided

to allow indirect memory addressing. The value contained in this register can be used

as the address of a location in data memory to access. Program jumps, table look-

ups, and other such operations can be implemented by writing the value computed

by the ALU directly to the Program Counter. The special function registers can be

accessed by reading or writing to locations in the Processor Control block of data

address space in the range 0x100-0x10F. The exception to this rule is the accumulator

W, which can always be accessed directly regardless of the address specified in the

instruction.

A map of the Processor Control address space is shown in Figure 4.11. As men-

tioned above, the Program Counter (PC) contains the address of the next instruction

to execute. The File Select Register (FSR) contains an address of memory to be

68

0x100 Program Counter (PC)

0x101 Status Register (STATUS)

0x102 File Select Register (FSR)

0x103 Indirect File Access (INDF)

0x104 Multiplier High Word (MULTHIGH)

0x105
... Reserved

0x10F

Figure 4.11: Processor Control register map.

accessed indirectly, and the Indirect File Access (INDF) “register” provides that

access. That is, when an instruction specifies INDF in its address field, the processor

switches the data bus address multiplexer so that the value of FSR is used instead.

The Status Register and the Multiplier High Word register both provide access

to several extra outputs of the ALU. The Status Register (STATUS) contains the

Zero and Carry bits, as shown in Figure 4.12. The Multiplier High Word register

(MULTHIGH) contains the high word of the result of the most recent multiplication

operation. The product of two 16-bit numbers is of course a 32-bit number; the

multiply instruction itself returns the low sixteen bits, as is the standard behavior for

16-bit processors, but this mechanism provides access to the high bits which would

otherwise simply be thrown away.

There are several key differences between this processor and the PIC microcon-

troller. First, this is of course a 16-bit processor rather than an 8-bit processor. Also,

in place of the PIC’s four-stage instruction pipeline, this processor uses a simpler two-

stage pipeline. During the first stage the processor decodes the current instruction

and fetches the required data, and during the second stage it computes and writes the

result while fetching the next instruction. Unlike the PIC, this processor’s instructions

are the same width as the data bus, sixteen bits. Instructions cannot therefore contain

literal values in the same way as the PIC, in which the value takes the place of the

address field. Instead, literal instructions are twice as long as other instructions; the

second word contains the literal value itself. When the processor decodes the first

69

0 1 2 15

C Z Reserved

C — The CARRY bit, used by the ADD and SUB instructions

Z — The ZERO bit, which indicates whether the result of the previous
ALU operation was zero or not.

Figure 4.12: The Status Register (STATUS), located at data address 0x101.

instruction during the first execution stage, it checks to see whether the instruction

has a literal value attached. If it does, it reads the second word from program memory

during the second stage and passes it to the ALU for processing. In this case it must

increment the Program Counter during both stages instead of only once, so that at

the end of the second stage it still points to the next instruction. Though literal

instructions therefore consume twice as much program memory as other instructions,

they execute in the same amount of time.

The ALU has one additional output, which is used to implement code branching. If

the instruction being executed is a bit-test instruction then the ALU computes a SKIP

output, which tells the processor whether or not to skip the next instruction. If the

ALU asserts SKIP then next instruction is in fact still executed but all write enables

lines are forced low. This prevents the instruction from having any effect; it as though

the instruction had never executed, but one instruction cycle has nevertheless passed.

The processor has a Sleep mode which the user may enter by executing a special

SLEEP instruction. This halts all execution of the processor until it is awakened by

an external 1.3kHz timer signal generated by the motor peripheral module. This can

be used to enforce a fixed control loop speed and to resynchronize the processor with

the motor peripherals, resulting in more predictable control loop behavior.

4.2.3 Instruction Set

The instruction set of this processor is in many respects simpler than that of the

PIC16F877 microcontroller used in the PIC-based control board, but it is in other

respects more powerful as well. It lacks the special function-handling instructions

CALL and RETURN, and in fact has no hardware stack at all. This is not a problem,

however, because the processor has enough memory to implement a software stack to

70

0 9 10 13 14 15

Address Opcode
W
D
O

W
L
I

Address — Address of data register to read/write.

Opcode — Selects basic operation type.

WDO — Result goes to W (0) or data (1).

WLI — Second argument comes from W (0) or literal (1). If WLI is set
then the instruction includes a second word containing a literal value.

Figure 4.13: Processor instruction format.

achieve the same functionality in a more flexible way. Even the GOTO instruction

does not appear here as a separate instruction; it can be implemented by using the

other instructions to write directly to the Program Counter. An assembler for this

processor might choose to provide GOTO as a mnemonic for either the MOVFLF or

the ADDFLF instruction, and the reference assembler that was developed to test the

processor does exactly that.

One advantage of this instruction set over the PIC’s is that because literal values

are not stored in the same place as data addresses within the instruction it is possible

to have instructions which access data and include a literal argument simultaneously.

For instance, this processor can initialize a register to an arbitrary literal value with

a single instruction; this operation would require two instructions in the PIC, one to

load the literal into the W register and a second to write the value to data memory.

Additionally, the instruction format allows any arithmetic operation to take a literal

argument, whereas the PIC only allows select literal operations. Lastly, this processor

supports more powerful mathematical operations than the PIC; in particular it has

a single-cycle multiply unit and a barrel shifter.

The instruction format is shown in Table 4.13. The Opcode field and WDO and

WLI bits specify the instruction type, while the Address field specifies the address

of the data register that is to be read and/or written by the instruction. The WDO

and WLI bits are primarily responsible for routing data to and from the ALU, while

the Opcode field is primarily responsible for selecting a particular ALU operation.

However there are certain exceptional cases which handle the few special-function

instructions that the processor does support.

71

Opcode Mnemonic Description

0x0 SLEEP Put the processor in sleep mode.

0x1 XOR Logical exclusive-or (ARG1 ⊗ ARG2).

0x2 MOV1 Copy first input (ARG1).

0x3 MOV2 Copy second input (ARG2).

0x4 AND Logical and (ARG1 ∧ ARG2).

0x5 IOR Logical inclusive-or (ARG1 ∨ ARG2).

0x6 BSR Barrel-shift right (ARG1 � ARG2).

0x7 BSL Barrel-shift left (ARG1 � ARG2).

0x8 ADD Twos-complement sum (ARG1 + ARG2).
(Carry bit goes in CARRY.)

0x9 SUB Twos-complement difference (ARG1 − ARG2).
(Borrow bit goes in CARRY.)

0xA MUL Unsigned product (ARG1 × ARG2).
(High word goes in MULTHIGH.)

0xB — Reserved.

0xC BTSC Skip if bit ARG2 of ARG1 is clear.

0xD BTSS Skip if bit ARG2 of ARG1 is set.

0xE — Reserved.

0xF NOP No operation.

Table 4.3: Interpretation of the Opcode instruction field. (ARG1 and ARG2 are
the instruction arguments, the first always coming from data memory and the
second coming from the W register or an instruction literal depending on the value
of the WLI bit.)

Table 4.3 describes the various possible values of the Opcode field. The values

0x1–0xA (XOR–MUL) all represent normal arithmetic operations: the ALU performs

the selected operation on the given inputs and the result is stored in the given output

location. The special instruction SLEEP places the processor in Sleep mode, as

described in the previous section. The special instruction BTSC and BTSS take

their inputs in the usual way but do not generate outputs; instead they instruct the

processor to skip the following instruction if the specified bit is set or clear. The

special instruction NOP is intended as a dummy operation and has no effect. The

72

two reserved opcodes are both treated as NOP but should not be used to allow for

code-compatible extensions of this processor architecture. In particular, the opcode

value 0xB is reserved for a hardware divider, the next logical improvement.

Each arithmetic operation has four variants, corresponding to the four combi-

nations of values of the WDO and WLI bits. The assembly mnemonics for these

variations have a simple form, consisting of one letter for each of the two inputs and

one letter for the output: FWW, FWF, FLW, and FLF. In all four cases the first

argument comes from the register file (F), but the second argument may come from

the accumulator (W) or a literal (L), and the output may be sent to the accumulator

(W) or registers (F). This convention mirrors that of the PIC assembly language,

but features a higher level of symmetry: any arithmetic operation can have any

input/output combination.

Since the MOVA and MOVB operations each ignore one of their arguments com-

pletely, it does not make sense for them to have the same assembly syntax as the other

arithmetic instructions. Further, the WLI bit has no effect on the MOVA operation.

Therefore the reference assembler combines the eight MOVA/MOVB instruction

variants into six different MOV instructions. Likewise, the bit test operations BTSC

and BTSS do not produce an output, and so the WDO bit does not affect them;

therefore there are only four distinct bit test instruction types instead of eight. The

complete instruction set supported by the reference assembler, which adopts both

these simplifications, is shown in Table 4.4.

4.2.4 Control Firmware

An example sixteen-channel motor control program was developed in this assembly

language, both to test the hardware and for immediate use controlling Leonardo.

The features of this program are very similar to those of the PIC control program

developed for the PIC-based control board as described in Section 4.1.2. It implements

sixteen position filters of the form given in equation 4.1 and sixteen PD position

controllers of the form given in equation 4.2. Communications between the processor

and the host PC is of course facilitated by the hardware in the design; no special

serial communications code must be written to use it. The program’s memory layout

is shown in Figure 4.14; this is all the host PC needs to know in order to control the

program.

73

0 15

Unfiltered Motor Position0x21x
{

Filtered Motor Position0x22x
{

Motor Velocity0x23x
{

Motor Current0x24x
{

Target Motor Position0x28x
{

P Gain Constant0x29x
{

D Gain Constant0x2Ax
{

Encoder/Position “Gain”0x2Bx
{

Figure 4.14: FPGA control program shared memory
layout. (Channel number x.)

The only interesting difference between this code and the corresponding PIC code

is that this code is considerably shorter and simpler. This is because the motor

peripherals are located directly on the processor data bus, because the processor sup-

ports multiplication directly, and because the serial interface is handled in hardware

as well. This is the great advantage to integrating a soft-core processor directly into a

design: the processor and its peripherals may be optimized for the tasks the processor

is expected to perform. This substantially simplifies program development.

74

XORFWW r Bitwise exclusive-or: W = *r ⊗ W (Sets ZERO bit)

XORFWF r Bitwise exclusive-or: *r = *r ⊗ W (Sets ZERO bit)

XORFLW r,l Bitwise exclusive-or: W = *r ⊗ l (Sets ZERO bit)

XORFLF r,l Bitwise exclusive-or: *r = *r ⊗ l (Sets ZERO bit)

MOVFW r Memory move/copy: W = *r (Sets ZERO bit)

MOVFF r Memory move/copy: *r = *r (Sets ZERO bit)

MOVWW Memory move/copy: W = W (Sets ZERO bit)

MOVWF r Memory move/copy: *r = W (Sets ZERO bit)

MOVLW l Memory move/copy: W = l (Sets ZERO bit)

MOVLF r,l Memory move/copy: *r = l (Sets ZERO bit)

ANDFWW r Bitwise and: W = *r ∧ W (Sets ZERO bit)

ANDFWF r Bitwise and: *r = *r ∧ W (Sets ZERO bit)

ANDFLW r,l Bitwise and: W = *r ∧ l (Sets ZERO bit)

ANDFLF r,l Bitwise and: *r = *r ∧ l (Sets ZERO bit)

IORFWW r Bitwise inclusive-or: W = *r (Sets ZERO bit)

IORFWF r Bitwise inclusive-or: *r = *r ∨ (Sets ZERO bit)

IORFLW r,l Bitwise inclusive-or: W = *r ∨ (Sets ZERO bit)

IORFLF r,l Bitwise inclusive-or: *r = *r ∨ (Sets ZERO bit)

BSRFWW r Bit-shift right: W = *r � W (Sets ZERO bit)

BSRFWF r Bit-shift right: *r = *r � W (Sets ZERO bit)

BSRFLW r,l Bit-shift right: W = *r � l (Sets ZERO bit)

BSRFLF r,l Bit-shift right: *r = *r � l (Sets ZERO bit)

BSLFWW r Bit-shift left: W = *r � W (Sets ZERO bit)

BSLFWF r Bit-shift left: *r = *r � W (Sets ZERO bit)

BSLFLW r,l Bit-shift left: W = *r � l (Sets ZERO bit)

BSLFLF r,l Bit-shift left: *r = *r � l (Sets ZERO bit)

ADDFWW r Twos-complement sum: W = *r + W (Sets ZERO and CARRY bits)

ADDFWF r Twos-complement sum: *r = *r + W (Sets ZERO and CARRY bits)

ADDFLW r,l Twos-complement sum: W = *r + l (Sets ZERO and CARRY bits)

ADDFLF r,l Twos-complement sum: *r = *r + l (Sets ZERO and CARRY bits)

SUBFWW r Twos-complement difference: W = *r - W (Sets ZERO and CARRY bits)

SUBFWF r Twos-complement difference: *r = *r - W (Sets ZERO and CARRY bits)

SUBFLW r,l Twos-complement difference: W = *r - l (Sets ZERO and CARRY bits)

SUBFLF r,l Twos-complement difference: *r = *r - l (Sets ZERO and CARRY bits)

MULFWW r Unsigned product: W = *r × W (Sets ZERO bit and MULTHIGH word)

MULFWF r Unsigned product: *r = *r × W (Sets ZERO bit and MULTHIGH word)

MULFLW r,l Unsigned product: W = *r × l (Sets ZERO bit and MULTHIGH word)

MULFLF r,l Unsigned product: *r = *r × l (Sets ZERO bit and MULTHIGH word)

BTSCFW r Skips next instruction if Wth bit of *ris clear
BTSCFL r,l Skips next instruction if lth bit of *ris clear
BTSSFW r Skips next instruction if Wth bit of *ris set
BTSSFL r,l Skips next instruction if lth bit of *ris set
GOTO label Implemented with MOVLF (absolute goto) or ADDFLF (relative goto)
SLEEP Places the processor in Sleep mode until next timer tick.
NOP No operation

Table 4.4: FPGA soft-core processor assembler instruction summary.

75

76

Chapter 5

Support Software

Powerful and flexible hardware is of no use without equally powerful and flexible

software to control it. The details of high-level behavior and motion-planning software

are beyond the scope of this thesis; however it must be easy for high-level software

programmers to access the important features of the hardware without getting bogged

down in details. The software libraries and protocols described in this chapter are

designed to make programming robot control systems as easy as possible.

There are three main requirements for a general-purpose motor control software

layer for interactive robots. At the lowest level, it must be straightforward to add

driver-level support for new motor control hardware. One level up, it must be easy to

configure a particular collection of hardware for use with a given robot. At the top,

there must be a clean interface to the chosen high-level motion-planning and behavior

system. Each of these three interfaces should be kept as isolated as possible from the

others; most importantly, the high-level interface should shield the behavior system

from the inner details of the hardware and drivers.

The motor system motor control library described in Section 5.1 aims to satisfy

these requirements. It has been implemented in C++ to achieve high performance in a

clean object-oriented framework. This library may be accessed directly by other C++

code. However in many situations that is not desirable; for instance, the high-level

behavior system may be written in a language such as Java that cannot conveniently

link against C++ libraries. Therefore a second network-based interface has been

provided. Network-based inter-process communication is useful in many situations in

interactive robotics. The Intra-Robot Communications Protocol (IRCP), described in

Section 5.2, is an extensible protocol designed to be used throughout an interactive

77

robot, not just at the motor-control layer. By standardizing on a single protocol,

programmers can focus on developing new behaviors instead of writing network code.

Moreover, having a single inter-process communications framework allows remote

debugging tools to be developed that can monitor the state of the entire robot with

ease, even when it is distributed across many computers running software developed

by different programming teams.

This document is only intended to provide an overview of the motor system library

and IRCP. The most up-to-date and complete documentation can be found on the

project website at http://robotic.media.mit.edu/motor/.

5.1 Motor System Software Layer

The motor system library described in this section provides a clean programming

interface to complex motor control hardware. It shields the high-level programmer

from specific hardware details while allowing the engineer to adjust those details with

ease. Adding support for new hardware is straightforward, though only the hardware

described in the previous chapter is supported at the present time.

5.1.1 Motor System Overview

The primary purpose of this general-purpose library is to simplify the interface

between the programmer and the engineer. To the programmer, a robot should look

like a single motor system consisting of a collection of joints with simple descriptive

names and standard properties such as position and velocity. The programmer should

be able to develop motion and behavior algorithms for the robot in these terms alone,

even if in reality the robot uses several different types of motor drivers and actuators

configured in a variety of different ways. Further, the engineer should be able to

adjust or reconfigure the motor system without bothering the programmer.

The high-level (public) interface to this library has been kept as simple as possible.

All the details of low-level configuration are handled automatically through an ASCII

configuration file provided by the engineer. This configuration file describes the

attached hardware, including hardware-specific configuration parameters, and assigns

a name and other properties to each joint. Since this file is processed at run-time, the

engineer can completely reconfigure the robot’s hardware without the programmer

even having to recompile. The engineer may also make fine adjustments while the

78

Function Description

motor system(string&) Constructor, takes configuration file name.

motor system::iterator find(string&) Find a motor by name.

motor system::iterator begin() Points to the first motor in the tree.

motor system::iterator end() Points beyond the last motor in the tree.
(Returned by find() for invalid motor name.)

Table 5.1: Public methods of the motor system class (partial listing).

robot is running via the library’s network interface without the programmer having

to take any action at all.

5.1.2 High-Level (Behavior) Interface

At the core of the library is the motor system class. The only parameter passed to the

constructor of this class is the location of a configuration file to use; all other low-level

details are hidden from the user. This class is treated (at this level) as a container

class, containing some number of motor objects. The class provides the standard set

of methods provided by other container classes in the standard library, and the motor

objects are accessed by means of iterators of type motor system::iterator. The

most important public methods of this class are listed in Table 5.1.

Each motor object has a simple interface consisting of easy-to-use and self-explanatory

functions such as set target position(), get velocity(), and enable(). All

function parameters and return values are given in real-world units chosen by the

author of the configuration file. Since not all joints may have the same semantics,

each motor object also provides methods to determine what functions it supports. For

instance, the drive motors in a wheeled robot may not support a notion of absolute

position, and this would be indicated by a certain return value of functions such as

supports set target position(). Since the programmer should be able to operate

the robot without an engineer present, certain key low-level features (most notably

the ability to enable and disable the motors) have been exposed at this layer. The

most important public methods of this class are listed in Table 5.2.

79

Function Description

void enable() Enable the joint

void disable() Gracefully disable the joint

void kill() Immediately disable the joint

void set target position(float) Set the joint’s target position

float get position() Get the joint’s actual measured position

float get velocity() Get the joint’s actual measured velocity

Table 5.2: Public methods of the motor class (partial listing).

5.1.3 Mid-Level (Configuration) Interface

As described above, all configuration of the motor system library is performed through

a single configuration text file. This file has a hierarchical structure: each section

contains simple name/value pairs and other (sub)sections. The top level of the

hierarchy contains parameters which apply to the entire motor system, such as a brief

name and description of the configuration or the definition of an IRCP interface.

The file then contains one section corresponding to each piece of motor control

hardware. The details of the format of these sections depend on the type of hardware

being described; after being parsed, the contents of each section is simply passed

to the corresponding low-level driver. However in general each section will contain

parameters configuring the hardware unit as a whole and subsections corresponding

to each motor the unit controls.

Broadly speaking, there are two types of data contained in the configuration

file. One the one hand there are low-level configuration parameters, such as specific

controller gains, which are specific to the low-level drivers being used and which

should be invisible to the upper layers. On the other hand there are parameters such

as joint names and units definitions which define the interface to the behavior system.

In this sense, this configuration file, and the motor system class as a whole, provide

a buffer layer between the low-level drivers and the high-level behavior code.

A simple fully-functional example configuration file illustrating these features is

shown in Figure 5.1.

80

name = "TestMotorSystem"

description = "Simple 1-DOF Motor System"

MotorDriverA { // Define a motor driver

type = "SerialMedusa16" // Specify hardware type

description = "Sixteen-channel Serial Medusa"

serial_device = "/dev/cua0" // Specify serial port

controller = control.bin // Other hardware parameters...

MotorA1 { // Define a motor

channel = 1 // Hardware channel number

name = "TestMotor" // The motor’s name

description = "A Test Motor" // A simple description

pgain = 1000 // Controller’s P gain

dgain = 1000 // Controller’s D gain

egain = 110 // Other controller params...

max_position = 50000

min_position = 10000

center_position = 30000 // Define the zero and scale

ticks_per_unit = 20000 // of the position units

}

}

Figure 5.1: Example motor system configuration file for a trivial 1-DOF robot.

5.1.4 Low-Level (Driver) Interface

Many details of each low-level hardware driver will, of course, be specific to the

hardware being driven. However, the motor system library makes it simple to design

a driver which may be configured by the standard configuration system. All config-

urable objects are derived from the abstract base class configurable object, which

provides a standard mechanism for setting and querying object parameters by name.

This class has two important subclasses, motor and abstract motor container.

To create a driver for a new piece of hardware, you must create two new classes.

The bulk of the driver code belongs in a class derived from abstract motor container.

This class would generally be responsible for spawning a separate thread that runs

the actual control code and communicates with the hardware. The details of each

particular motor should be stored in a class derived from motor; this class is re-

81

sponsible for implementing the simple interface functions for a single joint in a

thread-safe manner. Programmers interested in adding support for new hardware

should familiarize themselves with the existing drivers for the Medusa hardware; the

techniques used in that code should be applicable to most motor control hardware.

5.1.5 Abstract Tree Structure

The motor system::iterator class must be able to iterate over the entire motor

tree without regard to the fact that different motor objects may in fact have different

types. More importantly, those motor objects may be stored in containers that are

themselves of different types, rendering traditional iterators unusable. To address

this problem, the motor system library is based on a highly-abstract tree container

type called abstract tree<T>.

Three special types of iterator are provided to support this framework. The

first, abstract iterator<T>, provides a common interface for all iterators which

point to objects derived from a given abstract base class T. No single normal iter-

ator can iterate across different container types, but it is possible to use a pointer

to abstract iterator<T> for this purpose. The associated iterator creation and

destruction can be messy, and so a second iterator type, meta iterator<T>, is pro-

vided. This class contains a pointer to abstract iterator<T> and hides all memory

management issues from the user. A single iterator of type meta iterator<motor>

is thus capable of pointing to any motor in the motor system tree. The third iterator

type, indirect iterator<T>, is provided so that containers which contain pointers-

to-T can have iterators which dereference to T instead; it simply provides an extra

level of dereference.

The abstract tree<T> template class is a tree container which takes advantage of

these abstract iterator types. The branches of the tree may be members of arbitrary

subclasses of abstract tree<T>, and the leaves may be members of arbitrary sub-

classes of the base type T. In addition to the standard branch and leaf iterators, the

primary iterator class, abstract tree<T>::iterator, is capable of iterating across

all the leaves of the tree even if the tree’s branches have heterogeneous type. The

abstract type abstract motor container, described above as the base class for all

motor driver classes, is simply an empty class derived from abstract tree<motor>

and configurable object.

82

5.2 The Intra-Robot Communications Protocol

The control system for a complex interactive robot often consists of many mod-

ules running on multiple computers. Inter-module communication can become ex-

tremely complicated in this environment. Early control systems for Public Anemone

and Leonardo used a mixed bag of statically-linked, dynamically-linked, and one-off

network-based techniques. This design approach, in which is a new chunk of inter-

module communications code is written for every new communications link in the

system, is fundamentally not scalable. The number of links in a system increases

roughly as the square of the number of modules; soon the code base would be

dominated by communications code.

To address this problem, a standard inter-process communications protocol was

developed, known as the Intra-Robot Communications Protocol, or IRCP. This proto-

col is sockets-based, so that it may be used both for communication between multiple

processes on a single computer and between different computers. It is general enough

to be used throughout a robot control system, but it is structured enough to allow

considerable code reuse.

5.2.1 IRCP Overview

The Intra-Robot Communications Protocol (IRCP) was designed with three principles

in mind: extensibility, reusability, and simplicity. The protocol is extensible in the

sense that it is easy to add support for new channels of communication, with new

syntax and new semantics, as needed. It is reusable because it suggests a hierarchical

code structure which makes code reuse painless. Its simplicity will hopefully be

immediately apparent.

At the heart of IRCP is the IRCP packet format. In a sense, this format is the

beginning and the end of the IRCP specification. IRCP packets may be sent over any

channel, and may carry virtually any sort of payload. However, for the protocol to be

successful in simplifying inter-process communication users should adhere to certain

guidelines in deciding how to use it. These guidelines will be discussed below; first,

we present the packet format itself, shown in Figure 5.2.

Users of IRCP must agree on several values. First, each of the robots that may

coexist on a given network should be assigned a unique Robot ID in the range 0–

255. Then the various control processes for each robot should be broken down into

83

0 7 8 15 16 23 24 31

Start Byte Robot ID Packet Length

Source ID Destination ID Checksum

 Packet Header

Major Type Minor Type Subpacket Length

Subpacket Payload
...

 Subpacket

...

Major Type Minor Type Subpacket Length

Subpacket Payload
...

 Subpacket

Start Byte — A fixed value (0xA5) signifying the start of an IRCP packet. Allows
IRCP packets to be sent over a byte stream.

Robot ID — An identifier specifying the robot to which this packet applies. Prevents
inter-robot interference if multiple robots are coexisting on a single network, and
allows one process to control multiple robots.

Packet Length — The total packet length in bytes. Must be a multiple of four.

Source ID — An identifier specifying the module sending the packet. Intended
primarily for use in system debugging.

Destination ID — An identifier specifying the module to which the packet is being
sent. Intended primarily for use in system debugging.

Checksum — A 16-bit checksum used to verify packet integrity. The 16-bit twos-
complement of the sum of all other 16-bit words in the packet.

Major Type — Identifies the major type of the subpacket.

Minor Type — Identifies the minor type of the subpacket. The meaning of this byte
depends on the major subpacket type.

Subpacket Length — The subpacket length in bytes.

Subpacket Payload — The meaning and size of this field is determined by the
subpacket type. The subpacket payload must be padded to the smallest multiple
of four bytes greater than or equal to the given Subpacket Length.

Figure 5.2: Intra-Robot Communications Protocol packet format.

84

Major Type Description

0 Low-level motion (joint-space)

1 Body sensations (skin/touch)

2 Vision

3 Audition and speech recognition

4 Vocalization and speech generation

5 High-level motion (gestural/postural)

Table 5.3: Currently assigned major subpacket types for the
Intra-Robot Communications Protocol.

modules, each of which is assigned a Module ID from the same range. The Robot

ID and the Source and Destination Module IDs are included in the header of

each IRCP packet. In many situations this may seem unnecessary; there is often no

ambiguity about who is sending a packet, or to whom it is being sent. Nevertheless

these values should be included and checked, both to prevent miscommunication and

to allow remote debugging tools to monitor and interpret the communication with

ease.

The IRCP packet header also contains a start byte, the total packet length, and

a checksum field. These fields may also be redundant in many situations, such as

when the IRCP packet is sent via UDP. These fields exist primarily to allow IRCP

packets to be sent over a byte-stream communications channel, such as a serial port,

UNIX pipe, or TCP (as it is traditionally interpreted). These fields should be set

and checked regardless of the underlying transport method used in order to reduce

the chance misinterpreting erroneous packets. Ideally the IRCP packet-handling code

would be kept entirely independent of the transport code, increasing code modularity

and reusability.

The payload of each IRCP packet then consists of any number of IRCP subpackets.

The type of each subpacket determines its internal format and semantics and is

divided into a Major and Minor Type. This allows the IRCP semantics for, say,

vision processing to be reworked without risk of disrupting other robot subsystems.

Each subpacket header contains the total subpacket length in bytes as well as the

packet type, so that unrecognized subpackets can be easily skipped over. A small

number of major packet types have been defined at this time; these are listed in

85

Table 5.3. At the end of this section we will describe some minor types that have

been defined for major type 0; the minor types associated with other major types are

outside the scope of this thesis.

5.2.2 IRCP Subpacket Formats

The subpacket payload format associated with each subpacket type may be completely

independent from the format used by other types, and is completely up to the user.

Some subpackets may contain image data, others may contain joint position data,

and others may require no payload at all. However, when defining a new minor type

the programmer should be careful to look and see if an existing type uses a payload

format that would be appropriate to the new type as well. In this case the code to

format and interpret the subpacket payload may be reused immediately. If no existing

packet type has an appropriate payload format, then the programmer must of course

define a new one. Nevertheless, this should still be done with an eye towards code

reuse. The packet format should be defined in as general a manner as is appropriate,

and the packet-formatting code should be written modularly so that future packet

types may take advantage of it as well.

The reference IRCP implementation, currently being completed in C++, provides

a clean mechanism for subpacket code reuse. Each subpacket format is implemented

in an abstract class, and each individual packet type using that format is simply

derived from this class. This reference implementation presently supports several

packet formats, many of which are used by the low-level motion commands of major

type 0 described in the next section. These formats are listed in Table 5.4.

5.2.3 IRCP Major Type 0: Low-Level Motion Commands

Low-level motion control is the first application for which a full range of IRCP

subpacket types has been defined. These all have major type 0; the full list of minor

types which have been defined so far is provided in Table 5.5. Only some of the types

listed in the table have been used to date in a real motor system. The rest have been

defined to provide a more complete example of how to use IRCP.

By convention the low-level motor module operates in a slave mode only: it does

not send any packets unless they are specifically requested by some other module,

which we shall refer to as the master. One minor type, Request Response, is reserved

86

Type Payload Description

No Payload This subpacket format contains no payload. Note that the
subpacket length is therefore four, not zero, because of the
subpacket header.

Integer A single 32-bit integer, transmitted in standard network
byte order.

Float A single 32-bit floating-point number in the standard IEEE
format, transmitted in standard network byte order.

String A single null-terminated ASCII string, padded with 0–3
zeroes to a multiple of four bytes.

Optional Integer Interpreted either like type Integer or type No Payload
depending on the subpacket length.

Optional Float Interpreted either like type Float or type No Payload,
depending on the subpacket length.

Optional String Interpreted either like type String or type No Payload,
depending on the subpacket length.

Integer Array A collection of four-byte Integers. The number of values
is determined from the packet length. A packet type may
place restrictions on how many values may be present.

Float Array A collection of four-byte Floats. The number of values is
determined from the packet length. A packet type may
place restrictions on how many values may be present.

Float Array A collection of Strings. The number of values can only be
determined by parsing and counting the strings. A packet
type may place restrictions on how many values may be
present.

Indexed Integer Array A collection of pairs of Integers, alternating between index
and value. Allows a few values of an Integer array to be
sent without transmitting the entire array.

Indexed Float Array A collection of Integer/Float pairs, alternating between
index and value. Allows a few values of a Float array to
be sent without transmitting the entire array.

Indexed String Array A collection of Integer/String pairs, alternating between
index and value. Allows a few values of a String array to
be sent without transmitting the entire array.

Table 5.4: IRCP subpacket formats supported by the reference implementation.

87

Minor
Type

Description

0x00 Request Response (payload: Integer). Sent to a motor module to request
information. The payload is the minor type of the desired response.

0x01 Motor System Information (payload: Indexed String Array). Sent by
a motor module in response to an appropriate Request Response subpacket.
Contains the names of the joints controlled by the motor system, indexed by
joint number.

0x02 Enable Motors (payload: Integer Array). Sent to a motor module to
enable some or all of the motors. The payload contains the joint numbers of the
motors to enable; an empty array indicates all motors.

0x03 Disable Motors (payload: Integer Array). Sent to a motor module to
gracefully disable some or all of the motors. The payload contains the joint
numbers of the motors to disable; an empty array indicates all motors.

0x10 Set Target Positions (payload: Indexed Float Array). Sent to a motor
module to update some joints’ control target positions.

0x11 Set Target Velocities (payload: Indexed Float Array). Sent to a motor
module to update some joints’ control target velocities.

0x12 Set Target Accelerations (payload: Indexed Float Array). Sent to a
motor module to update some joints’ control target accelerations.

0x13 Set Target Forces (payload: Indexed Float Array). Sent to a motor
module to update some joints’ control target forces/torques.

0x14 Set Target Stiffnesses (payload: Indexed Float Array). Sent to a
motor module to update some joints’ control target stiffnesses.

0x15 Set Target Viscosities (payload: Indexed Float Array). Sent to a motor
module to update some joints’ control target viscosities.

0x20 Set All Target Positions (payload: Float Array). Sent to a motor
module to update all joints’ control target positions.

0x21 Set All Target Velocities (payload: Float Array). Sent to a motor
module to update all joints’ control target velocities.

0x22 Set All Target Accelerations (payload: Float Array). Sent to a motor
module to update all joints’ control target accelerations.

0x23 Set All Target Forces (payload: Float Array). Sent to a motor module
to update all joints’ control target forces/torques.

Continued on next page....

Table 5.5: IRCP Minor Types defined for Major Type 0: Low-level motion.

88

Table 5.5 continued from previous page....

Minor
Type

Description

0x24 Set All Target Stiffnesses (payload: Float Array). Sent to a motor
module to update all joints’ control target stiffnesses.

0x25 Set All Target Viscosities (payload: Float Array). Sent to a motor
module to update all joints’ control target viscosities.

0x30 Actual Positions (payload: Indexed Float Array). Sent by a motor
module in response to an appropriate Request Response subpacket. Contains
actual (sensed) joint positions.

0x31 Actual Velocities (payload: Indexed Float Array). Sent by a motor
module in response to an appropriate Request Response subpacket. Contains
actual (sensed) joint velocities.

0x32 Actual Accelerations (payload: Indexed Float Array). Sent by a motor
module in response to an appropriate Request Response subpacket. Contains
actual (sensed) joint accelerations.

0x33 Actual Forces (payload: Indexed Float Array). Sent by a motor module
in response to an appropriate Request Response subpacket. Contains actual
(sensed) joint forces/torques.

0x40 Actual Currents (payload: Indexed Float Array). Sent by a motor
module in response to an appropriate Request Response subpacket. Contains
actual (sensed) actuator currents.

0x41 Actual Temperatures (payload: Indexed Float Array). Sent by a motor
module in response to an appropriate Request Response subpacket. Contains
actual (sensed) actuator temperatures.

0x50 Joint Descriptions (payload: Indexed String Array). Sent by a motor
module in response to an appropriate Request Response subpacket. Contains
human-readable joint descriptions.

0x51 Joint Capabilities (payload: Indexed Integer Array). Sent by a motor
module in response to an appropriate Request Response subpacket. Contains
a bitfield describing the capabilities of each joint. See Figure 5.3 for a description
of this field.

0x52 Joint Status (payload: Indexed Integer Array). Sent by a motor module
in response to an appropriate Request Response subpacket. Contains a status
bitfield for each joint. See Figure 5.4 for a description of this field.

0xFF Emergency Stop (payload: No Payload). Initiates an emergency shut-down
of the motor system.

89

for this purpose. The master may send any number of these subpackets at a time

to request a variety of types of information from the motor system. In most cases

all modules that communicate with a motor system will have agreed on a set of

joint names a priori. The master will then request a Motor System Information

subpacket from the motor system, which will list the names of the joints supported

by the motor system and assign each one an integer index. The master should verify

that the joint names are as expected and should take note of the indices. All future

communication with the motor system will refer to each joint by its index for efficiency.

The master may now begin controlling or monitoring the state of the motor system.

Two minor types allow the master to enable and disable the active control of each

joint. There are also a range of minor types for controlling the target position,

velocity, acceleration, force, stiffness, or viscosity. Not all of these parameters may

be controllable in every joint, and any joint which is not capable of controlling for a

particular parameter should ignore attempts to set that parameter. If a parameter

value is given which is outside the range supported by a joint, the joint should clip the

value where appropriate and ignore it otherwise. Some joints may support multiple

control modes; for instance, a force-feedback actuator may be able to operate both

in a position-control mode and in a force-control mode. In this case issuing a Set

Target Positions or Set Target Forces command for that joint could cause it to

enter the appropriate mode.

The Set Target Velocities and Set Target Accelerations types are not

only intended for use with joints under pure velocity or acceleration control. They

may also be supported for position-controlled joints as a way for the higher motion

planning layers to provide hints to the low-level motion controllers about how the

target position is expected to change in the near future. This is particularly important

when the target position update rate is slow relative to the system dynamics. In

this situation the low-level controller must use a smoothing filter to avoid the jerky

quality of motion that is usually associated with low update rates, and velocity and

acceleration hints can be used to alter the smoothing filter’s behavior. (This feature

is not implemented in the firmware described Chapter 4 because no high-level motion

systems currently in use are capable of generating these hints.)

Two methods for setting these joint control values are provided. The first allows

the master to set a parameter for only a given set of joints, by providing an indexed

array of values, while the second allows the master to set the value of a particular

90

0 1 2 3 4 5 6 7 8 9 10 11 12 31

S
T
P

S
T
V

S
T
A

S
T
F

S
T
S

S
T
B

G
A
P

G
A
V

G
A
A

G
A
F

G
A
C

G
A
T

Reserved

STP — Joint supports the Set Target Positions commands.

STV — Joint supports the Set Target Velocities commands.

STA — Joint supports the Set Target Accelerations commands.

STF — Joint supports the Set Target Forces commands.

STS — Joint supports the Set Target Stiffnesses commands.

STB — Joint supports the Set Target Viscosities commands.

GAP — Joint supports the Actual Positions response type.

GAV — Joint supports the Actual Velocities response type.

GAA — Joint supports the Actual Accelerations response type.

GAF — Joint supports the Actual Forces response type.

GAC — Joint supports the Actual Currents response type.

GAT — Joint supports the Actual Temperatures response type.

Figure 5.3: IRCP low-level motion Joint Capabilities bitfield format.

parameter for all joints at once. This second interface is provided as a convenience

for use in relatively simple robots, and can of course be used only when the same

parameter can be safely set for all joints at that time. The first interface can be used

to allow two separate master modules to each have control of part of a robot. Of

course, no two modules should attempt to control the same joint simultaneously, and

so any two such modules must have some side-channel for arbitrating joint control.

The master controlling a particular joint would usually be expected to know the

basic properties of the joint in advance. For instance, a robot that lacked force sensors

would not generally be asked to control joint forces. Nevertheless, it is possible to learn

more about each motor. Three minor types, which can be requested by a Request

Response subpacket, provide additional information. This information might be

particularly useful for general-purpose motor and robot debugging tools. The Joint

Descriptions type provides a human-readable description of the function of each

joint. These descriptions must be specified by the engineer in the configuration file

of the motor system. The Joint Capabilities type specifies which parameters can

91

0 1 2 3 4 31

E
R
R

E
N
A

H
W
F

O
V
T

Reserved

ERR — General joint error condition indicator.

ENA — Joint is enabled.

HWF — Joint hardware failure indicator.

OVT — Joint over-temperature indicator.

Figure 5.4: IRCP low-level motion Joint Status bitfield format.

be controlled by each joint; the data is encoded in a bitfield as shown in Figure 5.3.

Lastly, the Joint Status type provides real-time status flags for each joint; this data

is also encoded in a bitfield, as shown in Figure 5.4.

92

Chapter 6

Concluding Thoughts

There are a number of important areas for future work relating to this thesis. The sim-

ple uncoupled PD control algorithm that is currently used by all the controllers could

be replaced with any of a wide range of more sophisticated control laws. The soft-core

processor used in the FPGA-based control boards would need to be redesigned for

the control law to be made considerably more complicated. Alternatively it could be

replaced with an open-source or commercial core. In the long run, the best option

would likely be to design a new control board based on one of the new FPGAs with

an integrated hard processor core, such as many in the Xilinx Virtex II-Pro series.

A true multi-axis control system would also need some mechanism for multiple

control boards to communicate directly. The RS-485 bus used on the FPGA-based

control board could be used for this purpose, but appropriate hardware would be

needed to interface this network to the host computer. If a higher performance

communications scheme were used instead then it would be possible to use this same

system to communicate with various sensors. A common high-speed sensorimotor

network would also facilitate extremely rapid reflex responses.

Finally, other motor driver cards should certainly be designed to extend the

Medusa line. In addition to higher-current drivers, support for brushless DC motors

would be very useful. Added safety features, such as over-current protection and

motor temperature sensing, would be useful in improving long-term robot reliability.

Looking further ahead, force-feedback will almost certainly play an important role in

future robots and requires special control hardware. A force-feedback system based

on series-elastic actuators, for instance, requires an additional position sensor at each

motor [PW95]. In the spirit of the Medusa line, the best solution would probably be

93

to add support for a large number of additional channels of analog and digital I/O

which could be configured to suit the needs of each individual application.

All the hardware and software described in this thesis has been tested and used to

some degree. However, no part of this system has been tested nearly enough to offer

any real sense of its long-term reliability. I have great confidence in the core motor

driver design, which has remained essentially unchanged since the first prototypes of

Public Anemone. However this system contains a very large number of parts, and

so it will be impossible to feel confident in its total reliability until after a long and

arduous burn-in. For instance, the motor drivers for Leonardo contain a total of 256

IRF7470 MOSFETs, and this part has been found to have a non-negligible off-the-

shelf failure rate. While it is possible to catch many problems on the test bench

before the hardware makes it into a robot, others problems do not emerge until after

extended use.

Now that the design, manufacturing, programming, and early testing are complete,

the goal of the next few months will be to permanently install the final control

hardware in both Public Anemone and Leonardo. This will also be the first chance to

install the extremely compact S-model motor controllers inside Leonardo’s head, as the

robot was sent back to California for modification and repair before the manufacture

of those modules was complete. This will be an exciting culmination of the original

work that developed into this thesis.

94

Appendix A

Board Schematics

The following figures show the complete Protel schematics used to generate the boards

described in this thesis.

A.1 Eight-Channel Driver Pack

A.2 PIC-Based Single-Port Controller

A.3 FPGA-Based Single-Port Controller

A.4 FPGA-Based Single-Port Controller (Model S)

95

1
2

3
4

5
6

7
8

ABCD

8
7

6
5

4
3

2
1

D C B A

Ti
tle

N
um

be
r

Re
vis

ion
Siz

e A2 D
ate

:
20

-A
pr

-2
00

3
Sh

ee
t

 of

Fi
le:

C:
\m

dh
\P

ro
tel

\V
or

tex
.D

db
D

raw
n B

y:

A1
9B

OP
A2

34
0

+5
V

R2
9

10
K

R3
0

10
K C2

3

1u
F

2.5
V

C2
5

10
uF

C2
7

10
uF

C3
4

10
0u

F
C3

5
10

0u
F

C3
6

10
0u

F
C3

7
10

0u
F

C3
8

10
0u

F
C3

9
10

0u
F

C4
0

10
0u

F
C4

1
10

0u
F

V
in

A1
9A

OP
A2

34
0

R3
1

1K

R3
2

10
0K

V
re

f
1

+I
n

2

-In
3

GN
D

4
/C

S/S
HD

N
5

D
ou

t
6

DC
LO

CK
7

V
cc

8
A2

1

AD
S8

32
0

+5
V

CU
R

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

35
36

37
38

39
40

41
42

43
44

45
46

47
48

49
50

51
52

53
54

55
56

57
58

59
60

61
62

63
64

J1 HE
AD

ER
 2X

32

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

35
36

37
38

39
40

41
42

43
44

45
46

47
48

49
50

51
52

53
54

55
56

57
58

59
60

61
62

63
64

J2 HE
AD

ER
 2X

32

A
IN

0
A

IN
1

A
IN

2

A
IN

3

A
IN

4

A
IN

5

A
IN

6

A
IN

7

SG
ND

SG
ND

SG
ND

SG
ND

+5
V

+5
V

SG
ND

SG
ND

CU
R

AN
A

V
in

V
in

V
in

V
in

V
in

V
in

V
in

V
in

V
in

V
in

V
in

V
in

V
in

V
in

V
in

V
in

V
in

V
in

V
in

V
in

V
in

V
in

V
in

V
in

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

V
in

V
in

V
in

V
in

GN
D

GN
D

GN
D

GN
D

+1
2V

+1
2V

SG
ND

SG
ND

+1
2V

+1
2V

+5
V

+5
V

EN
CA

0

EN
CA

1
EN

CA
2

EN
CA

3

EN
CA

4

EN
CA

5
EN

CA
6

EN
CA

7

EN
CB

0
EN

CB
1

EN
CB

2
EN

CB
3

EN
CB

4
EN

CB
5

EN
CB

6
EN

CB
7 CI

N0
CI

N1
CI

N2

CI
N3

CI
N4

CI
N5

CI
N6

CI
N7

R2
5A

1K
R2

5B
1K

R2
5C

1K
R2

5D
1K

R2
6D

1K
R2

6C
1K

R2
6B

1K
R2

6A
1K

C5
0A

.1u
F

C5
1A

.1u
F

C5
2A

.1u
F

C5
3A

.1u
F

C5
3B

.1u
F

C5
1B

.1u
F

C5
0B

.1u
F

C5
2B

.1u
F

A
IN

0
A

IN
1

A
IN

2
A

IN
3

A
IN

4
A

IN
5

A
IN

6
A

IN
7

C2
4

10
uF

C2
6

10
uF

C2
8

10
uF

C2
9

10
uF

C3
0

10
uF

C3
1

10
uF

C3
2

10
uF

C3
3

10
uF

+1
2V

C9 1u
F

+5
V

Q3 Q4

Q1 Q2

R1 0.
1

V
in SV

+
A

1

IN
 T

O
P

A
2

IN
 B

OT
TO

M
 A

3

UV
 O

UT
 A

4

GN
D

A
5

B
GA

TE
 F

B
A

6

SV
+

B
7

IN
 T

O
P

B
8

IN
 B

OT
TO

M
 B

9

UV
 O

UT
 B

10

GN
D

B
11

B
GA

TE
 FB

 B
12

B
GA

TE
 D

R
B

13
PV

+
B

14
T

SO
UR

CE
 B

15
T

GA
TE

 F
B

B
16

T
GA

TE
 D

R
B

17
BO

OS
T

B
18

B
GA

TE
 D

R
A

19
PV

+
A

20
T

SO
UR

CE
 A

21
T

GA
TE

 F
B

A
22

T
GA

TE
 D

R
A

23
BO

OS
T

A
24

A9 LT
11

62

GN
D

GN
D

+1
2V

+1
2V

+1
2V

+1
2V

D1 DI
OD

E

C1 1u
F

+1
2V

D2 DI
OD

E

C2 1u
F

+1
2V

A1 IN
A

15
2

2.5
V

+5
V

R2 0.
1

Q7 Q8

Q5 Q6

R3 0.
1

V
in SV

+
A

1

IN
 T

O
P

A
2

IN
 B

OT
TO

M
 A

3

UV
 O

UT
 A

4

GN
D

A
5

B
GA

TE
 F

B
A

6

SV
+

B
7

IN
 T

O
P

B
8

IN
 B

OT
TO

M
 B

9

UV
 O

UT
 B

10

GN
D

B
11

B
GA

TE
 FB

 B
12

B
GA

TE
 D

R
B

13
PV

+
B

14
T

SO
UR

CE
 B

15
T

GA
TE

 F
B

B
16

T
GA

TE
 D

R
B

17
BO

OS
T

B
18

B
GA

TE
 D

R
A

19
PV

+
A

20
T

SO
UR

CE
 A

21
T

GA
TE

 F
B

A
22

T
GA

TE
 D

R
A

23
BO

OS
T

A
24

A1
0

LT
11

62

GN
D

GN
D

+1
2V

+1
2V

+1
2V

+1
2V

D3 DI
OD

E

C3 1u
F

+1
2V

D4 DI
OD

E

C4 1u
F

+1
2V

A2 IN
A

15
2

2.5
V

+5
V

R4 0.
1

Q1
1

Q1
2

Q9 Q1
0 R5 0.

1

V
in SV

+
A

1

IN
 T

O
P

A
2

IN
 B

OT
TO

M
 A

3

UV
 O

UT
 A

4

GN
D

A
5

B
GA

TE
 F

B
A

6

SV
+

B
7

IN
 T

O
P

B
8

IN
 B

OT
TO

M
 B

9

UV
 O

UT
 B

10

GN
D

B
11

B
GA

TE
 FB

 B
12

B
GA

TE
 D

R
B

13
PV

+
B

14
T

SO
UR

CE
 B

15
T

GA
TE

 F
B

B
16

T
GA

TE
 D

R
B

17
BO

OS
T

B
18

B
GA

TE
 D

R
A

19
PV

+
A

20
T

SO
UR

CE
 A

21
T

GA
TE

 F
B

A
22

T
GA

TE
 D

R
A

23
BO

OS
T

A
24

A1
1

LT
11

62

GN
D

GN
D

+1
2V

+1
2V

+1
2V

+1
2V

D5 DI
OD

E

C5 1u
F

+1
2V

D6 DI
OD

E

C6 1u
F

+1
2V

A3 IN
A

15
2

2.5
V

+5
V

R6 0.
1

Q1
5

Q1
6

Q1
3

Q1
4 R7 0.

1

V
in SV

+
A

1

IN
 T

O
P

A
2

IN
 B

OT
TO

M
 A

3

UV
 O

UT
 A

4

GN
D

A
5

B
GA

TE
 F

B
A

6

SV
+

B
7

IN
 T

O
P

B
8

IN
 B

OT
TO

M
 B

9

UV
 O

UT
 B

10

GN
D

B
11

B
GA

TE
 FB

 B
12

B
GA

TE
 D

R
B

13
PV

+
B

14
T

SO
UR

CE
 B

15
T

GA
TE

 F
B

B
16

T
GA

TE
 D

R
B

17
BO

OS
T

B
18

B
GA

TE
 D

R
A

19
PV

+
A

20
T

SO
UR

CE
 A

21
T

GA
TE

 F
B

A
22

T
GA

TE
 D

R
A

23
BO

OS
T

A
24

A1
2

LT
11

62

GN
D

GN
D

+1
2V

+1
2V

+1
2V

+1
2V

D7 DI
OD

E

C7 1u
F

+1
2V

D8 DI
OD

E

C8 1u
F

+1
2V

A4 IN
A

15
2

2.5
V

+5
V

R8 0.
1

Q1
9

Q2
0

Q1
7

Q1
8 R9 0.

1

V
in SV

+
A

1

IN
 T

O
P

A
2

IN
 B

OT
TO

M
 A

3

UV
 O

UT
 A

4

GN
D

A
5

B
GA

TE
 F

B
A

6

SV
+

B
7

IN
 T

O
P

B
8

IN
 B

OT
TO

M
 B

9

UV
 O

UT
 B

10

GN
D

B
11

B
GA

TE
 FB

 B
12

B
GA

TE
 D

R
B

13
PV

+
B

14
T

SO
UR

CE
 B

15
T

GA
TE

 F
B

B
16

T
GA

TE
 D

R
B

17
BO

OS
T

B
18

B
GA

TE
 D

R
A

19
PV

+
A

20
T

SO
UR

CE
 A

21
T

GA
TE

 F
B

A
22

T
GA

TE
 D

R
A

23
BO

OS
T

A
24

A1
3

LT
11

62

GN
D

GN
D

+1
2V

+1
2V

+1
2V

+1
2V

D9 DI
OD

E

C1
5

1u
F

+1
2V

D1
0

DI
OD

E

C1
6

1u
F

+1
2V

A5 IN
A

15
2

2.5
V

+5
V

R1
0

0.
1

Q2
3

Q2
4

Q2
1

Q2
2 R1

1
0.

1

V
in SV

+
A

1

IN
 T

O
P

A
2

IN
 B

OT
TO

M
 A

3

UV
 O

UT
 A

4

GN
D

A
5

B
GA

TE
 F

B
A

6

SV
+

B
7

IN
 T

O
P

B
8

IN
 B

OT
TO

M
 B

9

UV
 O

UT
 B

10

GN
D

B
11

B
GA

TE
 FB

 B
12

B
GA

TE
 D

R
B

13
PV

+
B

14
T

SO
UR

CE
 B

15
T

GA
TE

 F
B

B
16

T
GA

TE
 D

R
B

17
BO

OS
T

B
18

B
GA

TE
 D

R
A

19
PV

+
A

20
T

SO
UR

CE
 A

21
T

GA
TE

 F
B

A
22

T
GA

TE
 D

R
A

23
BO

OS
T

A
24

A1
4

LT
11

62

GN
D

GN
D

+1
2V

+1
2V

+1
2V

+1
2V

D1
1

DI
OD

E

C1
7

1u
F

+1
2V

D1
2

DI
OD

E

C1
8

1u
F

+1
2V

A6 IN
A

15
2

2.5
V

+5
V

R1
2

0.
1

Q2
7

Q2
8

Q2
5

Q2
6 R1

3
0.

1

V
in SV

+
A

1

IN
 T

O
P

A
2

IN
 B

OT
TO

M
 A

3

UV
 O

UT
 A

4

GN
D

A
5

B
GA

TE
 F

B
A

6

SV
+

B
7

IN
 T

O
P

B
8

IN
 B

OT
TO

M
 B

9

UV
 O

UT
 B

10

GN
D

B
11

B
GA

TE
 FB

 B
12

B
GA

TE
 D

R
B

13
PV

+
B

14
T

SO
UR

CE
 B

15
T

GA
TE

 F
B

B
16

T
GA

TE
 D

R
B

17
BO

OS
T

B
18

B
GA

TE
 D

R
A

19
PV

+
A

20
T

SO
UR

CE
 A

21
T

GA
TE

 F
B

A
22

T
GA

TE
 D

R
A

23
BO

OS
T

A
24

A1
5

LT
11

62

GN
D

GN
D

+1
2V

+1
2V

+1
2V

+1
2V

D1
3

DI
OD

E

C1
9

1u
F

+1
2V

D1
4

DI
OD

E

C2
0

1u
F

+1
2V

A7 IN
A

15
2

2.5
V

+5
V

R1
4

0.
1

Q3
1

Q3
2

Q2
9

Q3
0 R1

5
0.

1

V
in SV

+
A

1

IN
 T

O
P

A
2

IN
 B

OT
TO

M
 A

3

UV
 O

UT
 A

4

GN
D

A
5

B
GA

TE
 F

B
A

6

SV
+

B
7

IN
 T

O
P

B
8

IN
 B

OT
TO

M
 B

9

UV
 O

UT
 B

10

GN
D

B
11

B
GA

TE
 FB

 B
12

B
GA

TE
 D

R
B

13
PV

+
B

14
T

SO
UR

CE
 B

15
T

GA
TE

 F
B

B
16

T
GA

TE
 D

R
B

17
BO

OS
T

B
18

B
GA

TE
 D

R
A

19
PV

+
A

20
T

SO
UR

CE
 A

21
T

GA
TE

 F
B

A
22

T
GA

TE
 D

R
A

23
BO

OS
T

A
24

A1
6

LT
11

62

GN
D

GN
D

+1
2V

+1
2V

+1
2V

+1
2V

D1
5

DI
OD

E

C2
1

1u
F

+1
2V

D1
6

DI
OD

E

C2
2

1u
F

+1
2V

A8 IN
A

15
2

2.5
V

+5
V

R1
6

0.
1

TO
PL

G0
TO

PL
G1

TO
PL

G2
TO

PL
G3

TO
PL

G4
TO

PL
G5

TO
PL

G6
TO

PL
G7

TO
PL

G0
TO

PL
G1

TO
PL

G2
TO

PL
G3

TO
PL

G4
TO

PL
G5

TO
PL

G6
TO

PL
G7

TO
PL

G0
TO

PL
G1

TO
PL

G2
TO

PL
G3

TO
PL

G4
TO

PL
G5

TO
PL

G6
TO

PL
G7

TO
PR

G0
TO

PR
G1

TO
PR

G2
TO

PR
G3

TO
PR

G4
TO

PR
G5

TO
PR

G6
TO

PR
G7

TO
PR

G0
TO

PR
G1

TO
PR

G2
TO

PR
G3

TO
PR

G4
TO

PR
G5

TO
PR

G6
TO

PR
G7

TO
PR

G0
TO

PR
G1

TO
PR

G2
TO

PR
G3

TO
PR

G4
TO

PR
G5

TO
PR

G6
TO

PR
G7

BO
TL

G0
BO

TL
G1

BO
TL

G2
BO

TL
G3

BO
TL

G4
BO

TL
G5

BO
TL

G6
BO

TL
G7

BO
TL

G0
BO

TL
G0

BO
TL

G1
BO

TL
G1

BO
TL

G2
BO

TL
G3

BO
TL

G4
BO

TL
G5

BO
TL

G6
BO

TL
G7

BO
TL

G2
BO

TL
G3

BO
TL

G4
BO

TL
G5

BO
TL

G6
BO

TL
G7

BO
TR

G0
BO

TR
G1

BO
TR

G2
BO

TR
G3

BO
TR

G4
BO

TR
G5

BO
TR

G6
BO

TR
G7

TO
PL

S0
TO

PL
S1

TO
PL

S2
TO

PL
S3

TO
PL

S4
TO

PL
S5

TO
PL

S6
TO

PL
S7

TOPLS0

TOPLS1

TOPLS2

TOPLS3

TOPLS4

TOPLS5

TOPLS6

TOPLS7

TO
PL

S0
TO

PL
S1

TO
PL

S2
TO

PL
S3

TO
PL

S4
TO

PL
S5

TO
PL

S6
TO

PL
S7

BO
TR

G0
BO

TR
G1

BO
TR

G2
BO

TR
G3

BO
TR

G4
BO

TR
G5

BO
TR

G6
BO

TR
G7

BO
TR

G0
BO

TR
G1

BO
TR

G2
BO

TR
G3

BO
TR

G4
BO

TR
G5

BO
TR

G6
BO

TR
G7

TO
PR

S0
TO

PR
S1

TO
PR

S2
TO

PR
S3

TO
PR

S4
TO

PR
S5

TO
PR

S6
TO

PR
S7

TOPRS0

TOPRS1

TOPRS2

TOPRS3

TOPRS4

TOPRS5

TOPRS6

TOPRS7

TO
PR

S0
TO

PR
S1

TO
PR

S2
TO

PR
S3

TO
PR

S4
TO

PR
S5

TO
PR

S6
TO

PR
S7

CU
R0

CU
R1

CU
R2

CU
R3

CU
R4

CU
R5

CU
R6

CU
R7

PW
M

A0
PW

M
A1

PW
M

A2
PW

M
A3

PW
M

A4
PW

M
A5

PW
M

A6
PW

M
A7

PW
M

C0
PW

M
C1

PW
M

C2
PW

M
C3

PW
M

C4
PW

M
C5

PW
M

C6
PW

M
C7

PW
M

B0
PW

M
B1

PW
M

B2
PW

M
B3

PW
M

D4
PW

M
D5

PW
M

D6
PW

M
D7

PW
M

D0
PW

M
D1

PW
M

D2
PW

M
D3

PW
M

B4
PW

M
B5

PW
M

B6
PW

M
B7

PW
M

A0

PW
M

A1

PW
M

A2

PW
M

A3

PW
M

A4

PW
M

A5

PW
M

A6

PW
M

A7

PW
M

B0

PW
M

B1

PW
M

B2

PW
M

B3

PW
M

B4

PW
M

B5

PW
M

B6

PW
M

B7

CU
R0

CU
R1

CU
R2

CU
R3

CU
R4

CU
R5

CU
R6

CU
R7

R2
7D

1K
R2

7C
1K

R2
7B

1K
R2

7A
1K

R2
8A

1K
R2

8B
1K

R2
8C

1K
R2

8D
1K

C5
3C

.1u
F

C5
2C

.1u
F

C5
1C

.1u
F

C5
0C

.1u
F

C5
0D

.1u
F

C5
2D

.1u
F

C5
3D

.1u
F

C5
1D

.1u
F

CI
N0

CI
N1

CI
N2

CI
N3

CI
N4

CI
N5

CI
N6

CI
N7

PO
T0

PO
T1

PO
T2

PO
T3

PO
T4

PO
T5

PO
T6

PO
T7

A2
0A

OP
A2

34
0

V
re

f
1

+I
n

2

-In
3

GN
D

4
/C

S/S
HD

N
5

D
ou

t
6

DC
LO

CK
7

V
cc

8
A2

2

AD
S8

32
0

+5
V

AN
A

+5
V

+5
V

+1
2V

+5
V

+5
V

+5
V

+5
V

+5
V

+5
V

+5
V

+5
V

PO
T0

PO
T1

PO
T2

PO
T3

PO
T4

PO
T5

PO
T6

PO
T7

US
ER

0
US

ER
1

US
ER

2
US

ER
3

US
ER

4
US

ER
5

US
ER

6
US

ER
7

EN
CA

0
EN

CA
1

EN
CA

2
EN

CA
3

EN
CA

4
EN

CA
5

EN
CA

6
EN

CA
7

EN
CB

0
EN

CB
1

EN
CB

2
EN

CB
3

EN
CB

4
EN

CB
5

EN
CB

6
EN

CB
7

+5
V

BO
OS

TA
0

BO
OS

TA
1

BO
OS

TA
2

BO
OS

TA
3

BO
OS

TA
4

BO
OS

TA
5

BO
OS

TA
6

BO
OS

TA
7

BO
OS

TB
0

BO
OS

TB
1

BO
OS

TB
2

BO
OS

TB
3

BO
OS

TB
4

BO
OS

TB
5

BO
OS

TB
6

BO
OS

TB
7

BOOSTA0

BOOSTA1

BOOSTA2

BOOSTA3

BOOSTA4

BOOSTA5

BOOSTA6

BOOSTA7

BOOSTB0

BOOSTB1

BOOSTB2

BOOSTB3

BOOSTB4

BOOSTB5

BOOSTB6

BOOSTB7

C1
1

1u
F

C1
3

1u
F

C1
0

1u
F

+5
V

C1
2

1u
F

C1
4

1u
F

PW
M

C0

PW
M

C1

PW
M

C2

PW
M

C3

PW
M

C4

PW
M

C5

PW
M

C6

PW
M

C7

PW
M

D0

PW
M

D1

PW
M

D2

PW
M

D3

PW
M

D4

PW
M

D5

PW
M

D6

PW
M

D7

1 2 3 4

5 6 7 8

J7 HE
AD

ER
 2X

4

1 2 3 4

5 6 7 8

J8 HE
AD

ER
 2X

4

1 2 3 4

5 6 7 8

J9 HE
AD

ER
 2X

4

1 2 3 4

5 6 7 8

J1
0

HE
AD

ER
 2X

4

1 2 3 4

5 6 7 8

J6 HE
AD

ER
 2X

4

1 2 3 4

5 6 7 8

J5 HE
AD

ER
 2X

4

1 2 3 4

5 6 7 8

J4 HE
AD

ER
 2X

4

1 2 3 4

5 6 7 8

J3 HE
AD

ER
 2X

4

M
OT

A0
M

OT
A1

M
OT

A2
M

OT
A3

M
OT

A4
M

OT
A5

M
OT

A6
M

OT
A7

M
OT

B0
M

OT
B1

M
OT

B2
M

OT
B3

M
OT

B4
M

OT
B5

M
OT

B6
M

OT
B7

M
OT

A0
M

OT
A1

M
OT

A2
M

OT
A3

M
OT

A4
M

OT
A5

M
OT

A6
M

OT
A7

M
OT

B0
M

OT
B1

M
OT

B2
M

OT
B3

M
OT

B4
M

OT
B5

M
OT

B6
M

OT
B7

US
ER

0
US

ER
1

US
ER

2
US

ER
3

US
ER

4
US

ER
5

US
ER

6
US

ER
7

AD
CL

K

AD
CL

K

AD
CS

AD
CS

AD
DA

A

AD
DA

C

AD
CL

K
AD

CS
AD

DA
A

AD
DA

C

Y4
1

Y6
2

CO
M

3

Y7
4

Y5
5

IN
H

6

GN
D

7

GN
D

8
C

9
B

10
A

11
Y3

12
Y0

13
Y1

14
Y2

15
V

cc
16

A1
7

SN
74

LV
40

51

Y4
1

Y6
2

CO
M

3

Y7
4

Y5
5

IN
H

6

GN
D

7

GN
D

8
C

9
B

10
A

11
Y3

12
Y0

13
Y1

14
Y2

15
V

cc
16

A1
8

SN
74

LV
40

51

M
UX

A
M

UX
A

M
UX

B
M

UX
B

M
UX

C
M

UX
C

M
UX

A
M

UX
B

M
UX

C

R1
8

10
K

R1
7

10
K

R2
0

10
K

R1
9

10
K

R2
2

10
K

R2
1

10
K

R2
4

10
K

R2
3

10
K

C4
4

10
uF

C4
5

10
uF

C4
6

10
uF

C4
7

10
uF

C4
8

10
uF

C4
9

10
uF

C4
2

10
0u

F
C4

3
10

0u
F

Figure A.1: Schematic of the Medusa Eight-Channel Driver Pack.

96

1
2

3
4

5
6

ABCD

6
5

4
3

2
1

D C B A

Ti
tle

N
um

be
r

R
ev

isi
on

Si
ze B D
at

e:
20

-A
pr

-2
00

3
Sh

ee
t

 o
f

Fi
le

:
C

:\m
dh

\P
ro

te
l\V

or
te

x.
D

db
D

ra
w

n
B

y:

V
cc

o
1

TC
K

2

I/O
3

I/O
4

V
re

f
5

I/O
6

V
re

f
7

I/O
8

G
N

D
9

V
cc

i
10

I/O
11

I/O
12

V
re

f
13

I/O
14

V
cc

i
15

I/O
 (G

C
K

3)
16

V
cc

o
17

G
N

D
18

I/O
 (G

C
K

2)
19

I/O
20

I/O
21

V
re

f
22

I/O
23

I/O
24

V
cc

i
25

G
N

D
26

I/O
27

V
re

f
28

I/O
29

V
re

f
30

I/O
31

W
R

IT
E

32

C
S

33

TD
I

34

G
N

D
35

TD
O

36

Vcco 37

CCLK 38

BUSY/DOUT 39

D0/DIN 40

I/O 41

Vref 42

I/O 43

Vref 44

D1 45

GND 46

D2 47

I/O 48

I/O 49

Vref 50

D3 51

I/O 52

I/O 53

GND 54

Vcco 55

I/O 56

Vcci 57

I/O 58

D4 59

Vref 60

I/O 61

I/O 62

D5 63

GND 64

D6 65

Vref 66

I/O 67

Vref 68

I/O 69

D7 70

INIT 71

PROGRAM 72

V
cc

o
73

D
O

N
E

74
G

N
D

75
I/O

76
I/O

77
I/O

78
V

re
f

79
I/O

80
V

re
f

81
I/O

82
G

N
D

83
V

cc
i

84
I/O

85
I/O

86
V

re
f

87
I/O

88
I/O

89
I/O

 (G
C

K
0)

90
G

N
D

91
V

cc
o

92
I/O

 (G
C

K
1)

93
V

cc
i

94
I/O

95
V

re
f

96
I/O

97
I/O

98
V

cc
i

99
G

N
D

10
0

I/O
10

1
V

re
f

10
2

I/O
10

3
V

re
f

10
4

I/O
10

5
I/O

10
6

I/O
10

7
M

2
10

8

Vcco109 M0110 GND111 M1112 I/O113 I/O114 I/O115 Vref116 I/O117 Vref118 I/O119 GND120 I/O121 I/O122 Vref123 I/O124 I/O125 Vcci126 I/O127 Vcco128 GND129 I/O130 I/O131 I/O132 Vref133 I/O134 I/O135 GND136 I/O137 Vref138 I/O139 Vref140 I/O141 I/O142 TMS143 GND144

A
1

X
C

V
10

0-
TQ

14
4

M
C

LR
1

R
A

0/
A

N
0

2

R
A

1/
A

N
1

3

R
A

2/
A

N
2

4

R
A

3/
A

N
3

5

R
A

4
6

R
A

5/
A

N
4

7

R
E0

/R
D

8

R
E1

/W
R

9

R
E2

/C
S

10

V
dd

11

V
ss

12

O
SC

1
13

O
SC

2
14

R
C

0
15

R
C

1
16

R
C

2
17

R
C

3/
SC

K
18

R
D

0
19

R
D

1
20

R
D

2
21

R
D

3
22

R
C

4/
SD

I
23

R
C

5/
SD

O
24

R
C

6/
TX

25
R

C
7/

R
X

26
R

D
4

27
R

D
5

28
R

D
6

29
R

D
7

30
V

ss
31

V
dd

32
R

B
0

33
R

B
1

34
R

B
2

35
R

B
3/

PG
M

36
R

B
4

37
R

B
5

38
R

B
6/

PG
C

39
R

B
7/

PG
D

40
A

4

PI
C

16
F8

77

+5
V

C
1+

1

V
+

2

C
1-

3

C
2+

4

C
2-

5

V
-

6

T2
ou

t
7

R2
in

8
R

2o
ut

9
T2

in
10

T1
in

11
R

1o
ut

12
R1

in
13

T1
ou

t
14

G
N

D
15

V
cc

16
A

3

M
A

X
20

2

23
2R

X

23
2T

X

1 6 2 7 3 8 4 9 5

J4

C
1B

.1
uF

C
1A

.1
uF

C
1C

.1
uF

C
1D

.1
uF

+3
.3

V

+3
.3

V

+3.3V

+3.3V

+3
.3

V

+3
.3

V

+3.3V

+3.3V

FT
C

K

G
N

D

G
N

D

G
N

D

G
N

D

GND

GND

GND

G
N

D

G
N

D

G
N

D

G
N

D

GND

GND

GND

GND

GND
FTMS

+2
.5

V

+2
.5

V

+2
.5

V

+2.5V

+2
.5

V

+2
.5

V

+2
.5

V

+2.5V

FT
D

I

FT
D

O

1 2 3 4

J6 H
EA

D
ER

 1
X

4

PG
D

PG
C

G
N

D
/M

C
LR

+5
V

/M
C

LR
PG

D
PG

C

G
N

D

G
N

D
+5

V

+5
V

/P
R

D
/P

W
R

PH
IL

O

23
2R

X
23

2T
X

20
M

hz

D
1

LE
D

R
5

10
0

R
6

22
0

R
7

22
0

V
cc

O
SC

En
ab

le

A
7

20
M

hz

+5
V

+5
V

PA
0

PA
1

PA
2

PA
3

PA
4

PA
5

PD
0

PD
1

PD
2

PD
3

PD
4

PD
5

PD
6

PD
7

GND

+2.5V

+2
.5

V

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

Q
8

Q
9

Q10

Q
11

Q12

Q
13

Q14

Q
15

Q16

Q
17

Q18

Q
19

Q20

Q
21

Q22

Q
23

Q24

Q
25

Q26

Q
27

Q28

Q
29

Q30
Q

31
Q32

Q
33

Q34

Q
35

Q36

Q
37

Q38

Q
39

Q40
Q

41

Q42
Q

43

Q44
Q

45

Q46
Q

47

Q48

Q
49

Q50

Q
51

Q52

Q
53

Q54

Q
55

Q56

Q
57

Q58

Q
59

Q
60

Q
61

Q
62

Q
63

Q
64

PA
0

PA
1

PA
2

PA
3

PA4
PA5

PD0

PD1
PD2
PD3

PD4
PD5
PD6
PD7

PHILO

/PWR

/PRD

20
M

hz

FT
M

S
FT

D
I

FT
D

O
FT

C
K

G
N

D

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

35
36

37
38

39
40

41
42

43
44

45
46

47
48

49
50

51
52

53
54

55
56

57
58

59
60

61
62

63
64

J1 H
EA

D
ER

 2
X

32

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

35
36

37
38

39
40

41
42

43
44

45
46

47
48

49
50

51
52

53
54

55
56

57
58

59
60

61
62

63
64

J2 H
EA

D
ER

 2
X

32

+V
in

+V
in

+V
in

+V
in

+V
in

+V
in

+V
in

+V
in

+V
in

+V
in

+V
in

+V
in

+V
in

+V
in

+V
in

+V
in

+V
in

+V
in

+V
in

+V
in

+V
in

+V
in

+V
in

+V
in

G
N

D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D

G
N

D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D

G
N

D

+V
in

+V
in

+V
in

+V
in

G
N

D

G
N

D
G

N
D

G
N

D

+1
2V

+1
2V

G
N

D
G

N
D

+1
2V

+1
2V

+5
V

+5
V

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

Q
8

Q
9

Q
10

Q
11

Q
12

Q
13

Q
14

Q
15

Q
16

Q
17

Q
18

Q
19

Q
20

Q
21

Q
22

Q
23

Q
24

Q
25

Q
26

Q
27

Q
28

Q
29

Q
30

Q
31

Q
32

Q
33

Q
34

Q
35

Q
36

Q
37

Q
38

Q
39

Q
40

Q
41

Q
42

Q
43

Q
44

Q
45

Q
46

Q
47

Q
48

Q
49

Q
50

Q
51

Q
52

Q
53

Q
54

Q
55

Q
56

Q
57

Q
58

Q
59

Q
60

Q
61

Q
62

Q
63

Q
64

R
4

10
K

FR
ES

ET

FR
ES

ET

1 2 3 4 5 6

J3 H
EA

D
ER

 1
X

6

+5
V

D
2A

LE
D

D
2B

LE
D

V
in

7

S/
S

3

GND 4

Vc 1

N
FB

6

V
sw

5

FB
2

GND 0

A
5

LT
13

70
+V

in

L1 47
uH

L2 47
uH

C
3

1u
F

C
2

1u
F

C
16

10
0u

F
C

15
10

0u
F

R
9

2K

R
8

53
.6

K

R
10

6.
19

K
C

6
.0

47
uF

C
5

.0
04

7u
F

D
3

ZH
C

S2
00

0

+1
2V

V
in

V
ou

t
En

ab
le

B
yp

as
s

U
2

TP
S7

64
25

C
19

.0
1u

F
C

21
10

uF

+2
.5

V

C
4

33
0u

F

V
in

V
ou

t
En

ab
le

B
yp

as
s

U
1

TP
S7

64
33

C
18

.0
1u

F
C

20
10

uF

+3
.3

V

1 1 2 2

J5 M
IN

IF
IT

SR
 2

LE
D

1
LE

D
2

LE
D

1
LE

D
2

L3 15
0u

H

D
4

ZH
C

S4
00

C
17

10
0u

F

+5
V

V
FB

1

LB
O

2
LB

I
3

GND 4

SW
5

SE
N

SE
6

V
IN

7

R
U

N
8

A
6

LT
C

14
74

C
7

C
A

P
C

9
C

A
P

C
10

C
A

P
C

8
C

A
P

C
11

C
A

P
C

12
C

A
P

C
13

C
A

P
C

14
C

A
P

+5
V

+3
.3

V
+2

.5
V

D
A

TA
1

C
LK

2

R
ES

ET
/O

E
3

C
E

4
G

N
D

5
C

EO
6

V
pp

7
V

cc
8

A
2

X
C

17
V

01

+3
.3

V
+3

.3
V

G
N

D

D
IN

C
C

LK
/IN

IT
D

O
N

E

R
3

10
K

R
2

10
K

R
1

30
0

+3
.3

V

DONE

/PROG

/INIT

DIN

D
O

N
E

/INIT
/PROG

1
2

3
4

5
6

7
8

9
10

11
12

13
14

J7 H
EA

D
ER

 2
X

7

A
N

0
A

N
1

A
N

2
A

N
3

A
N

4
SD

I
SC

K
SD

O
G

N
D

+5
V

G
N

D

+5
V

G
N

D
G

N
D

A
N

0
A

N
1

A
N

2
A

N
3

A
N

4

SD
I

SC
K

SD
O

CCLK

Figure A.2: Schematic of the Medusa PIC-Based Single-Port Controller.

97

1
2

3
4

5
6

ABCD

6
5

4
3

2
1

D C B A

Ti
tle

N
um

be
r

R
ev

isi
on

Si
ze C D
ate

:
20

-A
pr

-2
00

3
Sh

ee
t

 o
f

Fi
le

:
C

:\m
dh

\P
ro

te
l\V

or
te

x.
D

db
D

raw
n

By
:

I/O
1

I/O
2

GN
D

3

TD
I

4

I/O
5

I/O
6

I/O
7

I/O
8

I/O
9

I/O
10

I/O
11

I/O
12

PO
RT

_E
N

13

I/O
14

I/O
15

I/O
16

GN
D

17

I/O
18

I/O
19

TM
S

20

I/O
21

I/O
22

I/O
23

V
cc

24

I/O
25

I/O
26

I/O
27

I/O
28

I/O
29

I/O
30

I/O
31

I/O
32

GN
D

33

I/O
34

I/O
35

I/O
36

I/O 37

I/O 38

I/O 39

I/O 40

I/O 41

I/O 42

I/O 43

I/O 44

I/O 45

I/O 46

I/O 47

I/O 48

I/O 49

Vcc 50

Vcc 51

GND 52

I/O 53

I/O 54

I/O 55

I/O 56

GND 57

Vcc 58

GND 59

I/O 60

I/O 61

I/O 62

I/O 63

GND 64

I/O 65

I/O 66

I/O 67

I/O 68

I/O 69

I/O 70

I/O 71

I/O 72

V
cc

73
I/O

74
I/O

75
V

cc
76

I/O
77

I/O
78

I/O
79

I/O
80

I/O
81

I/O
82

I/O
83

I/O
84

GN
D

85
I/O

86
I/O

87
I/O

88
TC

K
89

I/O
90

I/O
91

I/O
92

I/O
93

I/O
94

V
cc

95
I/O

96
I/O

97
I/O

98
I/O

99
I/O

10
0

I/O
10

1
I/O

10
2

I/O
10

3
TD

O
10

4
GN

D
10

5
I/O

10
6

I/O
10

7
I/O

10
8

I/O109 I/O110 I/O111 I/O112 I/O113 I/O114 Vcc115 I/O116 I/O117 I/O118 I/O119 I/O120 I/O121 I/O122 Vcc123 GND124 IN3/CLK3125 IN2/CLK2126 IN1/CLK1127 IN0/CLK0128 GND129 Vcc130 I/O131 I/O132 I/O133 I/O134 GND135 I/O136 I/O137 I/O138 I/O139 I/O140 I/O141 I/O142 I/O143 Vcc144

A
2

X
C

R
32

56
X

L-
TQ

14
4

GN
D

GN
D

GN
D

GND

GND

GND

GND

GND

GND

GND

GN
D

GN
D

+3
.3

V

+3.3V
+3.3V

+3.3V

+3
.3

V

+3
.3

V

+3
.3

V

+3.3V

+3.3V

+3.3V

+3.3V

CT
D

I

CT
M

S

CT
D

O

C
TC

K

1 2 3 4 5 6

J7 H
EA

D
ER

 1
X

6

CT
M

S
CT

D
I

CT
D

O
C

TC
K

GN
D

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

35
36

37
38

39
40

41
42

43
44

45
46

47
48

49
50

51
52

53
54

55
56

57
58

59
60

61
62

63
64

J3 H
EA

D
ER

 2
X

32

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

35
36

37
38

39
40

41
42

43
44

45
46

47
48

49
50

51
52

53
54

55
56

57
58

59
60

61
62

63
64

J4 H
EA

D
ER

 2
X

32

+2
4V

+2
4V

+2
4V

+2
4V

+2
4V

+2
4V

+2
4V

+2
4V

+2
4V

+2
4V

+2
4V

+2
4V

+2
4V

+2
4V

+2
4V

+2
4V

+2
4V

+2
4V

+2
4V

+2
4V

+2
4V

+2
4V

+2
4V

+2
4V

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

+2
4V

+2
4V

+2
4V

+2
4V

GN
D

GN
D

GN
D

GN
D

+1
2V

+1
2V

GN
D

GN
D

+1
2V

+1
2V

+5
V

+5
V

A
15

1

A
14

2

A
13

3

A
12

4

A
11

5

A
10

6

A9
7

A8
8

A
21

9

A
20

10

W
E

11

R
P

12

V
PP

13

W
P

14

A
19

15

A
18

16

A
17

17

A7
18

A6
19

A5
20

A4
21

A3
22

A2
23

A1
24

A0
25

CE
26

GN
D

27
O

E
28

DQ
0

29
DQ

8
30

DQ
1

31
DQ

9
32

DQ
2

33
D

Q
10

34
DQ

3
35

D
Q

11
36

V
CC

37
DQ

4
38

D
Q

12
39

DQ
5

40
D

Q
13

41
DQ

6
42

D
Q

14
43

DQ
7

44
D

Q
15

45
GN

D
46

V
CC

Q
47

A
16

48
A3 28

FX
X

X
C3

 F
LA

SH
 (T

SO
P-

48
)

A0
A1A2A3A4A5A6A7A8A9A

10
A

11
A

12
A

13
A

14
A

15
A

16

A
17

A
18

A
19

A
20

A
21

D0D1D2D3D4D5D6D7 D8D9D
10

D
11

D
12

D
13

D
14

D
15

+3
.3

V

+3
.3

V
/R

ES
ET

/F
W

E

/F
C

S

/F
R

D
GN

D

GN
D

+3
.3

V

+3
.3

V

V
FB

1

LB
O

2

LB
I

3

GN
D

4
SW

5
SE

N
SE

6
V

IN
7

RU
N

8
A5 LT

C
14

74
-5

V

L1 IN
D

U
CT

O
R

D1 ZH
CS

40
0

+1
2V

C1
7

10
0u

F

V
FB

1

LB
O

2

LB
I

3

GN
D

4
SW

5
SE

N
SE

6
V

IN
7

RU
N

8
A6 LT

C
14

74
-3

.3
V

L2 IN
D

U
CT

O
R

+1
2V

V
FB

1

LB
O

2

LB
I

3

GN
D

4
SW

5
SE

N
SE

6
V

IN
7

RU
N

8
A7 LT

C1
47

4

L3 IN
D

U
CT

O
R

+1
2V

R5 1M
R4 1M

+5
V

C1
8

10
0u

F

+3
.3

V

C1
9

10
0u

F

+2
.5

V

/F
C

S

/RESET
/FWE

+2
4V

D2 ZH
CS

40
0

D3 ZH
CS

40
0

Q
B1

Q
B2

Q
B3

Q
B4

Q
B5

Q
B6

Q
B7

Q
B8

Q
B9

Q
B1

0
Q

B1
1

Q
B1

2
Q

B1
3

Q
B1

4
Q

B1
5

Q
B1

6
Q

B1
7

Q
B1

8
Q

B1
9

Q
B2

0
Q

B2
1

Q
B2

2
Q

B2
3

Q
B2

4
Q

B2
5

Q
B2

6
Q

B2
7

Q
B2

8
Q

B2
9

Q
B3

0
Q

B3
1

Q
B3

2
Q

B3
3

Q
B3

4
Q

B3
5

Q
B3

6
Q

B3
7

Q
B3

8
Q

B3
9

Q
B4

0
Q

B4
1

Q
B4

2
Q

B4
3

Q
B4

4
Q

B4
5

Q
B4

6
Q

B4
7

Q
B4

8
Q

B4
9

Q
B5

0
Q

B5
1

Q
B5

2
Q

B5
3

Q
B5

4
Q

B5
5

Q
B5

6
Q

B5
7

Q
B5

8
Q

B5
9

Q
B6

0
Q

B6
1

Q
B6

2
Q

B6
3

Q
B6

4

FW
R

IT
E

FD
O

N
E

A1
A2
A3
A4
A5
A6
A7
A17

A18
A19

A9
A10
A11

A20

A12

A21

A13

A8

A14
A15
A16

D6

D7

D
13

D
14

D15

D5/F
R

D

A0D0 D1 D2 D3 D4D8 D9 D
10

D
11

D
12

CLOCK

FD
0

FD
1

FD
2

FD
3

FD
4

FD
5

FD
6

FD
7

FP
RO

G

FI
N

IT

FB
U

SY
FC

CL
K

FC
S

C2 1u
F

C7 1u
F

C1
3

1u
F

C1
2

1u
F

C1 1u
F

C4 1u
F

C1
1

1u
F

C1
0

1u
F

C5 1u
F

C6 1u
F

+2
.5

V

+3
.3

V

C1
5

B
FC

C1
6

B
FC

+1
2V

+2
4V

1 2 3 4 5 6

J6 H
EA

D
ER

 1
X

6

FT
M

S
FT

D
I

FT
D

O
FT

C
K

GN
D

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

35
36

37
38

39
40

41
42

43
44

45
46

47
48

49
50

51
52

53
54

55
56

57
58

59
60

61
62

63
64

J1 H
EA

D
ER

 2
X

32

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

35
36

37
38

39
40

41
42

43
44

45
46

47
48

49
50

51
52

53
54

55
56

57
58

59
60

61
62

63
64

J2 H
EA

D
ER

 2
X

32

+2
4V

+2
4V

+2
4V

+2
4V

+2
4V

+2
4V

+2
4V

+2
4V

+2
4V

+2
4V

+2
4V

+2
4V

+2
4V

+2
4V

+2
4V

+2
4V

+2
4V

+2
4V

+2
4V

+2
4V

+2
4V

+2
4V

+2
4V

+2
4V

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

+2
4V

+2
4V

+2
4V

+2
4V

GN
D

GN
D

GN
D

GN
D

+1
2V

+1
2V

GN
D

GN
D

+1
2V

+1
2V

+5
V

+5
V

QA
1

QA
2

QA
3

QA
4

QA
5

QA
6

QA
7

QA
8

QA
9

Q
A

10
Q

A
11

Q
A

12
Q

A
13

Q
A

14
Q

A
15

Q
A

16
Q

A
17

Q
A

18
Q

A
19

Q
A

20
Q

A
21

Q
A

22
Q

A
23

Q
A

24
Q

A
25

Q
A

26
Q

A
27

Q
A

28
Q

A
29

Q
A

30
Q

A
31

Q
A

32
Q

A
33

Q
A

34
Q

A
35

Q
A

36
Q

A
37

Q
A

38
Q

A
39

Q
A

40
Q

A
41

Q
A

42
Q

A
43

Q
A

44
Q

A
45

Q
A

46
Q

A
47

Q
A

48
Q

A
49

Q
A

50
Q

A
51

Q
A

52
Q

A
53

Q
A

54
Q

A
55

Q
A

56
Q

A
57

Q
A

58
Q

A
59

Q
A

60
Q

A
61

Q
A

62
Q

A
63

Q
A

64

C3 1u
F

C9 1u
F

C8 1u
F

C1
4

1u
F

+2
.5

V

R1 10
K

R3 10
K

R2 10
K

+3
.3

V
+3

.3
V

G
CK

0
A

A
14

G
CK

1
A

B1
3

G
CK

2
C1

3

G
CK

3
E1

3

M
0

AD
4

M
1

W
7

M
2

A
B6

CC
LK

D
24

PR
O

G
RA

M
A

A
22

D
O

N
E

A
B2

1

IN
IT

Y
21

BU
SY

/D
O

U
T

E2
3

D
O

/D
IN

F2
2

D1
K

24

D2
K

22

D3
M

22

D4
R2

4

D5
U

23

D6
V

24

D7
A

B2
3

W
R

IT
E

C2
2

C
S

E2
1

TD
I

D
22

TD
O

C2
3

TM
S

F5

TC
K

E6

DX
N

A
B7

DX
P

Y8

A
1A

X
CV

80
0-

FG
67

6

V
cc

in
t

G7

V
cc

in
t

G
20

V
cc

in
t

H8

V
cc

in
t

H
19

V
cc

in
t

J9

V
cc

in
t

J1
0

V
cc

in
t

J1
1

V
cc

in
t

J1
6

V
cc

in
t

J1
7

V
cc

in
t

J1
8

V
cc

in
t

K9

V
cc

in
t

K
18

V
cc

in
t

L9

V
cc

in
t

L1
8

V
cc

in
t

T
9

V
cc

in
t

T1
8

V
cc

in
t

U9

V
cc

in
t

U
18

V
cc

in
t

V9

V
cc

in
t

V
10

V
cc

in
t

V
11

V
cc

in
t

V
16

V
cc

in
t

V
17

V
cc

in
t

V
18

V
cc

in
t

W
8

V
cc

in
t

W
19

V
cc

in
t

Y7

V
cc

in
t

Y
20

GN
D

A1

GN
D

A
26

GN
D

B2

GN
D

B9

GN
D

B1
4

GN
D

B1
8

GN
D

B2
5

GN
D

C3

GN
D

C2
4

GN
D

D4

GN
D

D
23

GN
D

E5

GN
D

E2
2

GN
D

J2

GN
D

J2
5

GN
D

N2

GN
D

P2
5

GN
D

V2

GN
D

V
25

GN
D

A
B5

GN
D

A
B2

2

GN
D

A
C4

GN
D

A
C2

3

GN
D

AD
3

GN
D

A
D

24

GN
D

A
E2

GN
D

A
E9

GN
D

A
E1

3

GN
D

A
E1

8

GN
D

A
E2

5

GN
D

A
F1

GN
D

A
F2

6

A
1B

X
CV

80
0-

FG
67

6

GN
D

K
10

GN
D

K
11

GN
D

K
12

GN
D

K
13

GN
D

K
14

GN
D

K
15

GN
D

K
16

GN
D

K
17

GN
D

L1
0

GN
D

L1
1

GN
D

L1
2

GN
D

L1
3

GN
D

L1
4

GN
D

L1
5

GN
D

L1
6

GN
D

L1
7

GN
D

M
10

GN
D

M
11

GN
D

M
12

GN
D

M
13

GN
D

M
14

GN
D

M
15

GN
D

M
16

GN
D

M
17

GN
D

N
10

GN
D

N
11

GN
D

N
12

GN
D

N
13

GN
D

N
14

GN
D

N
15

GN
D

N
16

GN
D

N
17

GN
D

P1
0

GN
D

P1
1

GN
D

P1
2

GN
D

P1
3

GN
D

P1
4

GN
D

P1
5

GN
D

P1
6

GN
D

P1
7

GN
D

R1
0

GN
D

R1
1

GN
D

R1
2

GN
D

R1
3

GN
D

R1
4

GN
D

R1
5

GN
D

R1
6

GN
D

R1
7

GN
D

T1
0

GN
D

T1
1

GN
D

T1
2

GN
D

T1
3

GN
D

T1
4

GN
D

T1
5

GN
D

T1
6

GN
D

T1
7

GN
D

U
10

GN
D

U
11

GN
D

U
12

GN
D

U
13

GN
D

U
14

GN
D

U
15

GN
D

U
16

GN
D

U
17

A
1C

X
CV

80
0-

FG
67

6

I/O
A4

I/O
A5

I/O
A6

I/O
A7

I/O
A8

I/O
A9

I/O
A

10
I/O

A
11

V
ref

A
12

I/O
B3

I/O
B4

I/O
B5

V
ref

B7
I/O

B8

V
ref

B1
0

I/O
B1

2

I/O
B1

3
I/O

C4

I/O
C5

I/O
C6

I/O
C7

I/O
C8

I/O
C9

I/O
C1

0

V
ref

C1
1

I/O
C1

2

I/O
D5

V
ref

D6

I/O
D7

I/O
D8

I/O
D9

I/O
D

10

I/O
D

11
I/O

D
12

I/O
D

13
I/O

E7

V
ref

E8
I/O

E9

I/O
E1

0
I/O

E1
1

I/O
E1

2
I/O

F7

I/O
F8

I/O
F9

I/O
F1

0
I/O

F1
1

I/O
F1

2
I/O

G8

I/O
G9

V
ref

G
10

I/O
G

11
I/O

G
12

I/O
G

13
I/O

H
13

V
cc

o
H9

V
cc

o
H

10

V
cc

o
H

11
V

cc
o

H
12

V
cc

o
J1

2
V

cc
o

J1
3

A
1D

X
CV

80
0-

FG
67

6

I/O
A

13
V

ref
A

14

I/O
A

16
V

ref
A

17

I/O
A

18
I/O

A
19

I/O
A

20
I/O

A
21

I/O
A

22
I/O

A
23

I/O
A

24
I/O

B1
5

I/O
B1

7
V

ref
B1

9

I/O
B2

0
I/O

B2
2

I/O
B2

3
I/O

C1
4

I/O
C1

5
I/O

C1
6

I/O
C1

7
I/O

C1
8

I/O
C1

9
V

ref
C2

0

V
ref

C2
1

I/O
D

14

V
ref

D
15

I/O
D

16

I/O
D

17
I/O

D
18

I/O
D

19
I/O

D
20

I/O
D

21
I/O

E1
4

I/O
E1

5
I/O

E1
6

I/O
E1

7
I/O

E1
8

I/O
E1

9
I/O

E2
0

I/O
F1

3
I/O

F1
4

I/O
F1

5
I/O

F1
6

I/O
F1

7
I/O

F1
8

I/O
F1

9
I/O

G
14

I/O
G

15
V

ref
G

16

I/O
G

17
I/O

G
18

I/O
G

19
I/O

H
14

V
cc

o
H

15
V

cc
o

H
16

V
cc

o
H

17
V

cc
o

H
18

V
cc

o
J1

4
V

cc
o

J1
5

A
1E

X
CV

80
0-

FG
67

6

I/O
D

25
I/O

D
26

I/O
E2

4
I/O

E2
5

I/O
E2

6
I/O

F2
0

I/O
F2

3
V

ref
F2

4

I/O
F2

6
I/O

G
21

I/O
G

22
I/O

G
23

I/O
G

24
I/O

G
25

V
ref

G
26

I/O
H

20

I/O
H

21
I/O

H
22

V
ref

H
23

I/O
H

24

I/O
H

25
I/O

H
26

I/O
J2

0
I/O

J2
1

I/O
J2

2
I/O

J2
3

I/O
J2

4
I/O

J2
6

V
ref

K
20

I/O
K

21

I/O
K

23
V

ref
K

25

I/O
K

26
I/O

L2
0

I/O
L2

1
I/O

L2
2

I/O
L2

3
I/O

L2
4

I/O
L2

6
I/O

M
20

I/O
M

21
V

ref
M

23

I/O
M

24
I/O

M
25

V
ref

M
26

I/O
N

19

I/O
N

20
I/O

N
21

I/O
N

22
I/O

N
23

I/O
N

24
I/O

N
26

V
cc

o
J1

9
V

cc
o

K
19

V
cc

o
L1

9
V

cc
o

M
18

V
cc

o
M

19
V

cc
o

N
18

A
1F

X
CV

80
0-

FG
67

6

I/O
P1

9
I/O

P2
0

I/O
P2

1
I/O

P2
2

I/O
P2

3
I/O

P2
4

I/O
P2

6
I/O

R2
0

I/O
R2

1
I/O

R2
2

V
ref

R2
3

V
ref

R2
5

I/O
R2

6
I/O

T2
0

I/O
T2

1
I/O

T2
2

I/O
T2

3
I/O

T2
4

I/O
T2

6
I/O

U
20

V
ref

U
21

I/O
U

22

I/O
U

24
V

ref
U

25

I/O
U

26
I/O

V
20

I/O
V

21
I/O

V
22

I/O
V

23
I/O

V
26

I/O
W

20
I/O

W
21

V
ref

W
22

V
ref

W
23

I/O
W

24
I/O

W
25

V
ref

W
26

I/O
Y

22

I/O
Y

23
I/O

Y
24

I/O
Y

25
I/O

Y
26

I/O
A

A
23

I/O
A

A
24

I/O
A

A
26

I/O
A

B2
4

I/O
A

B2
5

I/O
A

B2
6

I/O
A

C2
4

I/O
A

C2
5

I/O
A

C2
6

V
cc

o
P1

8
V

cc
o

R1
8

V
cc

o
R1

9
V

cc
o

T1
9

V
cc

o
U

19
V

cc
o

V
19

A
1G

X
CV

80
0-

FG
67

6

I/O
W

14
I/O

Y
14

I/O
Y

15
I/O

Y
16

I/O
Y

17
I/O

Y
18

I/O
Y

19
I/O

A
A

15

I/O
A

A
16

I/O
A

A
17

I/O
A

A
18

I/O
A

A
19

I/O
A

A
20

I/O
A

B1
4

I/O
A

B1
5

I/O
A

B1
6

I/O
A

B1
7

I/O
A

B1
8

I/O
A

B1
9

I/O
A

B2
0

I/O
A

C1
4

V
ref

A
C1

5

I/O
A

C1
6

I/O
A

C1
7

I/O
A

C1
8

I/O
A

C1
9

I/O
A

C2
0

I/O
A

C2
1

I/O
A

C2
2

I/O
A

D
14

I/O
A

D
15

I/O
A

D
16

I/O
A

D
17

V
ref

A
D

18

I/O
A

D
19

I/O
A

D
20

V
ref

A
D

21
V

ref
A

D
22

I/O
A

D
23

I/O
A

D
26

I/O
A

E1
5

I/O
A

E1
7

I/O
A

E1
9

I/O
A

E2
0

I/O
A

E2
2

I/O
A

E2
3

I/O
A

F1
4

V
ref

A
F1

5

I/O
A

F1
6

V
ref

A
F1

7

I/O
A

F1
8

I/O
A

F1
9

V
ref

A
F2

0
I/O

A
F2

1

I/O
A

F2
2

I/O
A

F2
3

V
cc

o
V

14
V

cc
o

V
15

V
cc

o
W

15
V

cc
o

W
16

V
cc

o
W

17
V

cc
o

W
18

A
1H

X
CV

80
0-

FG
67

6

I/O
W

13
I/O

Y9

I/O
Y

10
I/O

Y
11

I/O
Y

12
I/O

Y
13

I/O
AA

7
I/O

AA
8

I/O
AA

9
V

ref
A

A
10

I/O
A

A
11

I/O
A

A
12

I/O
A

A
13

V
ref

A
B8

I/O
A

B9
I/O

A
B1

0

I/O
A

B1
1

V
ref

A
B1

2

I/O
A

C5
I/O

A
C6

V
ref

A
C7

I/O
A

C8

I/O
A

C9
I/O

A
C1

0

I/O
A

C1
1

I/O
A

C1
2

I/O
A

C1
3

I/O
AD

5

I/O
AD

6
I/O

AD
7

I/O
AD

8
I/O

AD
9

I/O
A

D
10

I/O
A

D
11

I/O
A

D
12

I/O
A

D
13

I/O
A

E4
I/O

A
E5

I/O
A

E7
I/O

A
E8

V
ref

A
E1

0
I/O

A
E1

2

I/O
A

F3
I/O

A
F4

I/O
A

F5
I/O

A
F6

I/O
A

F7
V

ref
A

F8

I/O
A

F9
I/O

A
F1

0

I/O
A

F1
1

V
ref

A
F1

2

I/O
A

F1
3

V
cc

o
V

12
V

cc
o

V
13

V
cc

o
W

9
V

cc
o

W
10

V
cc

o
W

11
V

cc
o

W
12

A
1I

X
CV

80
0-

FG
67

6

I/O
P1

I/O
P3

I/O
P4

I/O
P5

I/O
P6

I/O
P7

I/O
P8

V
ref

R1

I/O
R2

I/O
R3

V
ref

R4
I/O

R5

I/O
R6

I/O
R7

I/O
T

1
I/O

T
3

I/O
T

4
I/O

T
5

I/O
T

6
I/O

T
7

I/O
U1

V
ref

U2

I/O
U3

I/O
U4

I/O
U5

V
ref

U6

I/O
U7

I/O
V1

I/O
V3

I/O
V4

V
ref

V5
I/O

V6

I/O
V7

I/O
W

1

I/O
W

2
I/O

W
3

I/O
W

4
I/O

W
5

I/O
W

6
V

ref
Y1

I/O
Y2

I/O
Y3

I/O
Y4

I/O
Y5

I/O
Y6

I/O
AA

1

I/O
AA

3
I/O

AA
4

I/O
AA

5
I/O

A
B1

I/O
A

B2
V

ref
A

B3

I/O
A

B4
I/O

A
C1

I/O
A

C2
I/O

A
C3

V
cc

o
P9

V
cc

o
R8

V
cc

o
R9

V
cc

o
T

8

V
cc

o
U8

V
cc

o
V8

A
1J

X
CV

80
0-

FG
67

6

I/O
D1

I/O
D2

I/O
D3

I/O
E1

I/O
E2

I/O
E3

I/O
E4

I/O
F1

I/O
F3

V
cc

o
F4

I/O
G1

I/O
G2

I/O
G3

V
ref

G4

I/O
G5

I/O
G6

V
ref

H1
I/O

H2

I/O
H3

I/O
H4

I/O
H5

I/O
H6

I/O
H7

I/O
J1

I/O
J3

I/O
J4

I/O
J5

I/O
J6

I/O
J7

V
ref

K1

I/O
K2

I/O
K3

I/O
K4

I/O
K5

V
ref

K6
I/O

K7

I/O
L1

I/O
L3

I/O
L4

I/O
L5

I/O
L6

I/O
L7

I/O
M

1
V

ref
M

2

I/O
M

3
I/O

M
4

V
ref

M
5

I/O
M

6

I/O
M

7
I/O

N1

I/O
N3

I/O
N4

I/O
N5

I/O
N6

I/O
N7

I/O
N8

V
cc

o
J8

V
cc

o
K8

V
cc

o
L8

V
cc

o
M

8

V
cc

o
M

9
V

cc
o

N9

A
1K

X
CV

80
0-

FG
67

6

+2
.5

V

+3
.3

V
+3

.3
V

+3
.3

V
+3

.3
V

+3
.3

V
+3

.3
V

+3
.3

V
+3

.3
V

+3
.3

V
+3

.3
V

+3
.3

V
+3

.3
V

+3
.3

V
+3

.3
V

+3
.3

V
+3

.3
V

FP
RO

G
FD

O
N

E
FI

N
IT

FD
0

FD
1

FD
2

FD
3

FD
4

FD
5

FD
6

FD
7

FB
U

SY

FC
CL

K

CL
O

CK

FW
R

IT
E

FC
S

FT
D

I
FT

D
O

FT
M

S
FT

C
K

GN
D

+2
.5

V
+2

.5
V

NC
1

R
2

RE
3

D
E

4

D
5

GN
D

6

GN
D

7
NC

8
Y

9
Z

10
B

11
A

12
NC

13
V

CC
14

A4 LT
C4

91

1 2 3 4 5 6

J8 H
EA

D
ER

 1
X

6

+1
2V

+5
V

ST
X

SR
X

GN
D

TX
EN

A
8B

IN
V

ER
TE

R

A
8A

IN
V

ER
TE

R

+5
V

R7 10
0

R8 22
0

D5 BL
U

E
LE

D

D6 RE
D

 L
ED

LE
D

1

LE
D

2

D4 BL
U

E
LE

D

R6 10
0

1 2 3 4J5 H
EA

D
ER

 1
X

4

LE
D

1
LE

D
2

+5
V

+5
V

V
cc

O
SC

En
ab

le

A9 O
SC

IL
LA

TO
R

W
/E

N
A

BL
E

CL
O

CK
+5

V

SR
X

ST
X

TX
EN

QA
2

QA
4

QA
6

QA
8

Q
A

10

Q
A

12
Q

A
14

Q
A

16
Q

A
18

Q
A

20

Q
A

22
Q

A
24

Q
A

26

Q
A

28
Q

A
30

Q
A

32

Q
A

34

Q
A

36
Q

A
38

Q
A

40

Q
A

42
Q

A
44

Q
A

46

Q
A

48
Q

A
50

Q
A

52
Q

A
54

Q
A

56

Q
A

58
Q

A
60

Q
A

62
Q

A
64

Q
A

13
Q

A
15

Q
A

17

Q
A

19

Q
A

21

Q
A

23

Q
A

25

Q
A

27

Q
A

29

Q
A

31

Q
A

33

Q
A

35

Q
A

37

Q
A

39

Q
A

41

Q
A

43

Q
A

45

Q
A

47

Q
A

49

Q
A

51

QA
1

QA
3

QA
5

QA
7

QA
9

Q
A

11

Q
A

53

Q
A

55

Q
A

57

Q
A

59

Q
A

61

Q
A

63

Q
B3

3

Q
B3

4

Q
B3

5

Q
B3

6
Q

B5
0

Q
B3

7

Q
B4

9

Q
B3

8

Q
B4

8

Q
B3

9

Q
B4

7

Q
B4

0

Q
B4

6

Q
B4

1

Q
B4

5
Q

B4
2

Q
B4

4

Q
B4

3

Q
B5

1

Q
B5

2

Q
B5

3
Q

B5
4

Q
B5

5

Q
B5

6
Q

B5
7

Q
B5

8

Q
B5

9

Q
B6

0

Q
B6

1
Q

B6
2

Q
B6

3

Q
B6

4

Q
B1

Q
B2

Q
B3

Q
B4

Q
B5

Q
B6

Q
B7

Q
B8

Q
B9

Q
B1

0
Q

B1
1

Q
B1

2

Q
B1

3
Q

B1
4

Q
B1

5

Q
B1

6
Q

B1
7

Q
B1

8
Q

B1
9

Q
B2

0

Q
B2

1
Q

B2
2

Q
B2

3

Q
B2

4
Q

B2
5

Q
B2

6

Q
B2

7

Q
B2

8

Q
B2

9
Q

B3
0

Q
B3

1

Q
B3

2

SR
X

Figure A.3: Schematic of the Medusa FPGA-Based Dual-Port Controller.

98

1
2

3
4

5
6

ABCD

6
5

4
3

2
1

D C B A

Ti
tle

N
um

be
r

R
ev

isi
on

Si
ze C D
ate

:
20

-A
pr

-2
00

3
Sh

ee
t

 o
f

Fi
le

:
C

:\m
dh

\P
ro

te
l\V

or
te

x.
D

db
D

raw
n

By
:

I/O
1

I/O
2

GN
D

3

TD
I

4

I/O
5

I/O
6

I/O
7

I/O
8

I/O
9

I/O
10

I/O
11

I/O
12

PO
RT

_E
N

13

I/O
14

I/O
15

I/O
16

GN
D

17

I/O
18

I/O
19

TM
S

20

I/O
21

I/O
22

I/O
23

V
cc

24

I/O
25

I/O
26

I/O
27

I/O
28

I/O
29

I/O
30

I/O
31

I/O
32

GN
D

33

I/O
34

I/O
35

I/O
36

I/O 37

I/O 38

I/O 39

I/O 40

I/O 41

I/O 42

I/O 43

I/O 44

I/O 45

I/O 46

I/O 47

I/O 48

I/O 49

Vcc 50

Vcc 51

GND 52

I/O 53

I/O 54

I/O 55

I/O 56

GND 57

Vcc 58

GND 59

I/O 60

I/O 61

I/O 62

I/O 63

GND 64

I/O 65

I/O 66

I/O 67

I/O 68

I/O 69

I/O 70

I/O 71

I/O 72

V
cc

73
I/O

74
I/O

75
V

cc
76

I/O
77

I/O
78

I/O
79

I/O
80

I/O
81

I/O
82

I/O
83

I/O
84

GN
D

85
I/O

86
I/O

87
I/O

88
TC

K
89

I/O
90

I/O
91

I/O
92

I/O
93

I/O
94

V
cc

95
I/O

96
I/O

97
I/O

98
I/O

99
I/O

10
0

I/O
10

1
I/O

10
2

I/O
10

3
TD

O
10

4
GN

D
10

5
I/O

10
6

I/O
10

7
I/O

10
8

I/O109 I/O110 I/O111 I/O112 I/O113 I/O114 Vcc115 I/O116 I/O117 I/O118 I/O119 I/O120 I/O121 I/O122 Vcc123 GND124 IN3/CLK3125 IN2/CLK2126 IN1/CLK1127 IN0/CLK0128 GND129 Vcc130 I/O131 I/O132 I/O133 I/O134 GND135 I/O136 I/O137 I/O138 I/O139 I/O140 I/O141 I/O142 I/O143 Vcc144

A
2

X
C

R
32

56
X

L-
TQ

14
4

GN
D

GN
D

GN
D

GND

GND

GND

GND

GND

GND

GND

GN
D

GN
D

+3
.3

V

+3.3V
+3.3V

+3.3V

+3
.3

V

+3
.3

V

+3
.3

V

+3.3V

+3.3V

+3.3V

+3.3V

CT
D

I

CT
M

S

CT
D

O

C
TC

K

1 2 3 4 5 6

J7 H
EA

D
ER

 1
X

6

CT
M

S
CT

D
I

CT
D

O
C

TC
K

GN
D

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

35
36

37
38

39
40

41
42

43
44

45
46

47
48

49
50

51
52

53
54

55
56

57
58

59
60

61
62

63
64

J3 H
EA

D
ER

 2
X

32

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

35
36

37
38

39
40

41
42

43
44

45
46

47
48

49
50

51
52

53
54

55
56

57
58

59
60

61
62

63
64

J4 H
EA

D
ER

 2
X

32

+2
4V

+2
4V

+2
4V

+2
4V

+2
4V

+2
4V

+2
4V

+2
4V

+2
4V

+2
4V

+2
4V

+2
4V

+2
4V

+2
4V

+2
4V

+2
4V

+2
4V

+2
4V

+2
4V

+2
4V

+2
4V

+2
4V

+2
4V

+2
4V

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

+2
4V

+2
4V

+2
4V

+2
4V

GN
D

GN
D

GN
D

GN
D

+1
2V

+1
2V

GN
D

GN
D

+1
2V

+1
2V

+5
V

+5
V

A
15

1

A
14

2

A
13

3

A
12

4

A
11

5

A
10

6

A9
7

A8
8

A
21

9

A
20

10

W
E

11

R
P

12

V
PP

13

W
P

14

A
19

15

A
18

16

A
17

17

A7
18

A6
19

A5
20

A4
21

A3
22

A2
23

A1
24

A0
25

CE
26

GN
D

27
O

E
28

DQ
0

29
DQ

8
30

DQ
1

31
DQ

9
32

DQ
2

33
D

Q
10

34
DQ

3
35

D
Q

11
36

V
CC

37
DQ

4
38

D
Q

12
39

DQ
5

40
D

Q
13

41
DQ

6
42

D
Q

14
43

DQ
7

44
D

Q
15

45
GN

D
46

V
CC

Q
47

A
16

48
A3 28

FX
X

X
C3

 F
LA

SH
 (T

SO
P-

48
)

A0
A1A2A3A4A5A6A7A8A9A

10
A

11
A

12
A

13
A

14
A

15
A

16

A
17

A
18

A
19

A
20

A
21

D0D1D2D3D4D5D6D7 D8D9D
10

D
11

D
12

D
13

D
14

D
15

+3
.3

V

+3
.3

V
/R

ES
ET

/F
W

E

/F
C

S

/F
R

D
GN

D

GN
D

+3
.3

V

+3
.3

V

V
FB

1

LB
O

2

LB
I

3

GN
D

4
SW

5
SE

N
SE

6
V

IN
7

RU
N

8
A5 LT

C
14

74
-5

V

L1 IN
D

U
CT

O
R

D1 ZH
CS

40
0

+1
2V

C1
7

10
0u

F

V
FB

1

LB
O

2

LB
I

3

GN
D

4
SW

5
SE

N
SE

6
V

IN
7

RU
N

8
A6 LT

C
14

74
-3

.3
V

L2 IN
D

U
CT

O
R

+1
2V

V
FB

1

LB
O

2

LB
I

3

GN
D

4
SW

5
SE

N
SE

6
V

IN
7

RU
N

8
A7 LT

C1
47

4

L3 IN
D

U
CT

O
R

+1
2V

R5 1M
R4 1M

+5
V

C1
8

10
0u

F

+3
.3

V

C1
9

10
0u

F

+2
.5

V

/F
C

S

/RESET
/FWE

+2
4V

D2 ZH
CS

40
0

D3 ZH
CS

40
0

Q
B1

Q
B2

Q
B3

Q
B4

Q
B5

Q
B6

Q
B7

Q
B8

Q
B9

Q
B1

0
Q

B1
1

Q
B1

2
Q

B1
3

Q
B1

4
Q

B1
5

Q
B1

6
Q

B1
7

Q
B1

8
Q

B1
9

Q
B2

0
Q

B2
1

Q
B2

2
Q

B2
3

Q
B2

4
Q

B2
5

Q
B2

6
Q

B2
7

Q
B2

8
Q

B2
9

Q
B3

0
Q

B3
1

Q
B3

2
Q

B3
3

Q
B3

4
Q

B3
5

Q
B3

6
Q

B3
7

Q
B3

8
Q

B3
9

Q
B4

0
Q

B4
1

Q
B4

2
Q

B4
3

Q
B4

4
Q

B4
5

Q
B4

6
Q

B4
7

Q
B4

8
Q

B4
9

Q
B5

0
Q

B5
1

Q
B5

2
Q

B5
3

Q
B5

4
Q

B5
5

Q
B5

6
Q

B5
7

Q
B5

8
Q

B5
9

Q
B6

0
Q

B6
1

Q
B6

2
Q

B6
3

Q
B6

4

FW
R

IT
E

FD
O

N
E

A1
A2
A3
A4
A5
A6
A7
A17

A18
A19

A9
A10
A11

A20

A12

A21

A13

A8

A14
A15
A16

D6

D7

D
13

D
14

D15

D5/F
R

D

A0D0 D1 D2 D3 D4D8 D9 D
10

D
11

D
12

CLOCK

FD
0

FD
1

FD
2

FD
3

FD
4

FD
5

FD
6

FD
7

FP
RO

G

FI
N

IT

FB
U

SY
FC

CL
K

FC
S

C2 1u
F

C7 1u
F

C1
3

1u
F

C1
2

1u
F

C1 1u
F

C4 1u
F

C1
1

1u
F

C1
0

1u
F

C5 1u
F

C6 1u
F

+2
.5

V

+3
.3

V

C1
5

B
FC

+1
2V

1 2 3 4 5 6

J6 H
EA

D
ER

 1
X

6

FT
M

S
FT

D
I

FT
D

O
FT

C
K

GN
D

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

35
36

37
38

39
40

41
42

43
44

45
46

47
48

49
50

51
52

53
54

55
56

57
58

59
60

61
62

63
64

J1 H
EA

D
ER

 2
X

32

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

35
36

37
38

39
40

41
42

43
44

45
46

47
48

49
50

51
52

53
54

55
56

57
58

59
60

61
62

63
64

J2 H
EA

D
ER

 2
X

32

+2
4V

+2
4V

+2
4V

+2
4V

+2
4V

+2
4V

+2
4V

+2
4V

+2
4V

+2
4V

+2
4V

+2
4V

+2
4V

+2
4V

+2
4V

+2
4V

+2
4V

+2
4V

+2
4V

+2
4V

+2
4V

+2
4V

+2
4V

+2
4V

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

+2
4V

+2
4V

+2
4V

+2
4V

GN
D

GN
D

GN
D

GN
D

+1
2V

+1
2V

GN
D

GN
D

+1
2V

+1
2V

+5
V

+5
V

QA
1

QA
2

QA
3

QA
4

QA
5

QA
6

QA
7

QA
8

QA
9

Q
A

10
Q

A
11

Q
A

12
Q

A
13

Q
A

14
Q

A
15

Q
A

16
Q

A
17

Q
A

18
Q

A
19

Q
A

20
Q

A
21

Q
A

22
Q

A
23

Q
A

24
Q

A
25

Q
A

26
Q

A
27

Q
A

28
Q

A
29

Q
A

30
Q

A
31

Q
A

32
Q

A
33

Q
A

34
Q

A
35

Q
A

36
Q

A
37

Q
A

38
Q

A
39

Q
A

40
Q

A
41

Q
A

42
Q

A
43

Q
A

44
Q

A
45

Q
A

46
Q

A
47

Q
A

48
Q

A
49

Q
A

50
Q

A
51

Q
A

52
Q

A
53

Q
A

54
Q

A
55

Q
A

56
Q

A
57

Q
A

58
Q

A
59

Q
A

60
Q

A
61

Q
A

62
Q

A
63

Q
A

64

C3 1u
F

C9 1u
F

C8 1u
F

C1
4

1u
F

+2
.5

V

R1 10
K

R3 10
K

R2 10
K

+3
.3

V
+3

.3
V

G
CK

0
A

A
14

G
CK

1
A

B1
3

G
CK

2
C1

3

G
CK

3
E1

3

M
0

AD
4

M
1

W
7

M
2

A
B6

CC
LK

D
24

PR
O

G
RA

M
A

A
22

D
O

N
E

A
B2

1

IN
IT

Y
21

BU
SY

/D
O

U
T

E2
3

D
O

/D
IN

F2
2

D1
K

24

D2
K

22

D3
M

22

D4
R2

4

D5
U

23

D6
V

24

D7
A

B2
3

W
R

IT
E

C2
2

C
S

E2
1

TD
I

D
22

TD
O

C2
3

TM
S

F5

TC
K

E6

DX
N

A
B7

DX
P

Y8

A
1A

X
CV

80
0-

FG
67

6

V
cc

in
t

G7

V
cc

in
t

G
20

V
cc

in
t

H8

V
cc

in
t

H
19

V
cc

in
t

J9

V
cc

in
t

J1
0

V
cc

in
t

J1
1

V
cc

in
t

J1
6

V
cc

in
t

J1
7

V
cc

in
t

J1
8

V
cc

in
t

K9

V
cc

in
t

K
18

V
cc

in
t

L9

V
cc

in
t

L1
8

V
cc

in
t

T
9

V
cc

in
t

T1
8

V
cc

in
t

U9

V
cc

in
t

U
18

V
cc

in
t

V9

V
cc

in
t

V
10

V
cc

in
t

V
11

V
cc

in
t

V
16

V
cc

in
t

V
17

V
cc

in
t

V
18

V
cc

in
t

W
8

V
cc

in
t

W
19

V
cc

in
t

Y7

V
cc

in
t

Y
20

GN
D

A1

GN
D

A
26

GN
D

B2

GN
D

B9

GN
D

B1
4

GN
D

B1
8

GN
D

B2
5

GN
D

C3

GN
D

C2
4

GN
D

D4

GN
D

D
23

GN
D

E5

GN
D

E2
2

GN
D

J2

GN
D

J2
5

GN
D

N2

GN
D

P2
5

GN
D

V2

GN
D

V
25

GN
D

A
B5

GN
D

A
B2

2

GN
D

A
C4

GN
D

A
C2

3

GN
D

AD
3

GN
D

A
D

24

GN
D

A
E2

GN
D

A
E9

GN
D

A
E1

3

GN
D

A
E1

8

GN
D

A
E2

5

GN
D

A
F1

GN
D

A
F2

6

A
1B

X
CV

80
0-

FG
67

6

GN
D

K
10

GN
D

K
11

GN
D

K
12

GN
D

K
13

GN
D

K
14

GN
D

K
15

GN
D

K
16

GN
D

K
17

GN
D

L1
0

GN
D

L1
1

GN
D

L1
2

GN
D

L1
3

GN
D

L1
4

GN
D

L1
5

GN
D

L1
6

GN
D

L1
7

GN
D

M
10

GN
D

M
11

GN
D

M
12

GN
D

M
13

GN
D

M
14

GN
D

M
15

GN
D

M
16

GN
D

M
17

GN
D

N
10

GN
D

N
11

GN
D

N
12

GN
D

N
13

GN
D

N
14

GN
D

N
15

GN
D

N
16

GN
D

N
17

GN
D

P1
0

GN
D

P1
1

GN
D

P1
2

GN
D

P1
3

GN
D

P1
4

GN
D

P1
5

GN
D

P1
6

GN
D

P1
7

GN
D

R1
0

GN
D

R1
1

GN
D

R1
2

GN
D

R1
3

GN
D

R1
4

GN
D

R1
5

GN
D

R1
6

GN
D

R1
7

GN
D

T1
0

GN
D

T1
1

GN
D

T1
2

GN
D

T1
3

GN
D

T1
4

GN
D

T1
5

GN
D

T1
6

GN
D

T1
7

GN
D

U
10

GN
D

U
11

GN
D

U
12

GN
D

U
13

GN
D

U
14

GN
D

U
15

GN
D

U
16

GN
D

U
17

A
1C

X
CV

80
0-

FG
67

6

I/O
A4

I/O
A5

I/O
A6

I/O
A7

I/O
A8

I/O
A9

I/O
A

10
I/O

A
11

V
ref

A
12

I/O
B3

I/O
B4

I/O
B5

V
ref

B7
I/O

B8

V
ref

B1
0

I/O
B1

2

I/O
B1

3
I/O

C4

I/O
C5

I/O
C6

I/O
C7

I/O
C8

I/O
C9

I/O
C1

0

V
ref

C1
1

I/O
C1

2

I/O
D5

V
ref

D6

I/O
D7

I/O
D8

I/O
D9

I/O
D

10

I/O
D

11
I/O

D
12

I/O
D

13
I/O

E7

V
ref

E8
I/O

E9

I/O
E1

0
I/O

E1
1

I/O
E1

2
I/O

F7

I/O
F8

I/O
F9

I/O
F1

0
I/O

F1
1

I/O
F1

2
I/O

G8

I/O
G9

V
ref

G
10

I/O
G

11
I/O

G
12

I/O
G

13
I/O

H
13

V
cc

o
H9

V
cc

o
H

10

V
cc

o
H

11
V

cc
o

H
12

V
cc

o
J1

2
V

cc
o

J1
3

A
1D

X
CV

80
0-

FG
67

6

I/O
A

13
V

ref
A

14

I/O
A

16
V

ref
A

17

I/O
A

18
I/O

A
19

I/O
A

20
I/O

A
21

I/O
A

22
I/O

A
23

I/O
A

24
I/O

B1
5

I/O
B1

7
V

ref
B1

9

I/O
B2

0
I/O

B2
2

I/O
B2

3
I/O

C1
4

I/O
C1

5
I/O

C1
6

I/O
C1

7
I/O

C1
8

I/O
C1

9
V

ref
C2

0

V
ref

C2
1

I/O
D

14

V
ref

D
15

I/O
D

16

I/O
D

17
I/O

D
18

I/O
D

19
I/O

D
20

I/O
D

21
I/O

E1
4

I/O
E1

5
I/O

E1
6

I/O
E1

7
I/O

E1
8

I/O
E1

9
I/O

E2
0

I/O
F1

3
I/O

F1
4

I/O
F1

5
I/O

F1
6

I/O
F1

7
I/O

F1
8

I/O
F1

9
I/O

G
14

I/O
G

15
V

ref
G

16

I/O
G

17
I/O

G
18

I/O
G

19
I/O

H
14

V
cc

o
H

15
V

cc
o

H
16

V
cc

o
H

17
V

cc
o

H
18

V
cc

o
J1

4
V

cc
o

J1
5

A
1E

X
CV

80
0-

FG
67

6

I/O
D

25
I/O

D
26

I/O
E2

4
I/O

E2
5

I/O
E2

6
I/O

F2
0

I/O
F2

3
V

ref
F2

4

I/O
F2

6
I/O

G
21

I/O
G

22
I/O

G
23

I/O
G

24
I/O

G
25

V
ref

G
26

I/O
H

20

I/O
H

21
I/O

H
22

V
ref

H
23

I/O
H

24

I/O
H

25
I/O

H
26

I/O
J2

0
I/O

J2
1

I/O
J2

2
I/O

J2
3

I/O
J2

4
I/O

J2
6

V
ref

K
20

I/O
K

21

I/O
K

23
V

ref
K

25

I/O
K

26
I/O

L2
0

I/O
L2

1
I/O

L2
2

I/O
L2

3
I/O

L2
4

I/O
L2

6
I/O

M
20

I/O
M

21
V

ref
M

23

I/O
M

24
I/O

M
25

V
ref

M
26

I/O
N

19

I/O
N

20
I/O

N
21

I/O
N

22
I/O

N
23

I/O
N

24
I/O

N
26

V
cc

o
J1

9
V

cc
o

K
19

V
cc

o
L1

9
V

cc
o

M
18

V
cc

o
M

19
V

cc
o

N
18

A
1F

X
CV

80
0-

FG
67

6

I/O
P1

9
I/O

P2
0

I/O
P2

1
I/O

P2
2

I/O
P2

3
I/O

P2
4

I/O
P2

6
I/O

R2
0

I/O
R2

1
I/O

R2
2

V
ref

R2
3

V
ref

R2
5

I/O
R2

6
I/O

T2
0

I/O
T2

1
I/O

T2
2

I/O
T2

3
I/O

T2
4

I/O
T2

6
I/O

U
20

V
ref

U
21

I/O
U

22

I/O
U

24
V

ref
U

25

I/O
U

26
I/O

V
20

I/O
V

21
I/O

V
22

I/O
V

23
I/O

V
26

I/O
W

20
I/O

W
21

V
ref

W
22

V
ref

W
23

I/O
W

24
I/O

W
25

V
ref

W
26

I/O
Y

22

I/O
Y

23
I/O

Y
24

I/O
Y

25
I/O

Y
26

I/O
A

A
23

I/O
A

A
24

I/O
A

A
26

I/O
A

B2
4

I/O
A

B2
5

I/O
A

B2
6

I/O
A

C2
4

I/O
A

C2
5

I/O
A

C2
6

V
cc

o
P1

8
V

cc
o

R1
8

V
cc

o
R1

9
V

cc
o

T1
9

V
cc

o
U

19
V

cc
o

V
19

A
1G

X
CV

80
0-

FG
67

6

I/O
W

14
I/O

Y
14

I/O
Y

15
I/O

Y
16

I/O
Y

17
I/O

Y
18

I/O
Y

19
I/O

A
A

15

I/O
A

A
16

I/O
A

A
17

I/O
A

A
18

I/O
A

A
19

I/O
A

A
20

I/O
A

B1
4

I/O
A

B1
5

I/O
A

B1
6

I/O
A

B1
7

I/O
A

B1
8

I/O
A

B1
9

I/O
A

B2
0

I/O
A

C1
4

V
ref

A
C1

5

I/O
A

C1
6

I/O
A

C1
7

I/O
A

C1
8

I/O
A

C1
9

I/O
A

C2
0

I/O
A

C2
1

I/O
A

C2
2

I/O
A

D
14

I/O
A

D
15

I/O
A

D
16

I/O
A

D
17

V
ref

A
D

18

I/O
A

D
19

I/O
A

D
20

V
ref

A
D

21
V

ref
A

D
22

I/O
A

D
23

I/O
A

D
26

I/O
A

E1
5

I/O
A

E1
7

I/O
A

E1
9

I/O
A

E2
0

I/O
A

E2
2

I/O
A

E2
3

I/O
A

F1
4

V
ref

A
F1

5

I/O
A

F1
6

V
ref

A
F1

7

I/O
A

F1
8

I/O
A

F1
9

V
ref

A
F2

0
I/O

A
F2

1

I/O
A

F2
2

I/O
A

F2
3

V
cc

o
V

14
V

cc
o

V
15

V
cc

o
W

15
V

cc
o

W
16

V
cc

o
W

17
V

cc
o

W
18

A
1H

X
CV

80
0-

FG
67

6

I/O
W

13
I/O

Y9

I/O
Y

10
I/O

Y
11

I/O
Y

12
I/O

Y
13

I/O
AA

7
I/O

AA
8

I/O
AA

9
V

ref
A

A
10

I/O
A

A
11

I/O
A

A
12

I/O
A

A
13

V
ref

A
B8

I/O
A

B9
I/O

A
B1

0

I/O
A

B1
1

V
ref

A
B1

2

I/O
A

C5
I/O

A
C6

V
ref

A
C7

I/O
A

C8

I/O
A

C9
I/O

A
C1

0

I/O
A

C1
1

I/O
A

C1
2

I/O
A

C1
3

I/O
AD

5

I/O
AD

6
I/O

AD
7

I/O
AD

8
I/O

AD
9

I/O
A

D
10

I/O
A

D
11

I/O
A

D
12

I/O
A

D
13

I/O
A

E4
I/O

A
E5

I/O
A

E7
I/O

A
E8

V
ref

A
E1

0
I/O

A
E1

2

I/O
A

F3
I/O

A
F4

I/O
A

F5
I/O

A
F6

I/O
A

F7
V

ref
A

F8

I/O
A

F9
I/O

A
F1

0

I/O
A

F1
1

V
ref

A
F1

2

I/O
A

F1
3

V
cc

o
V

12
V

cc
o

V
13

V
cc

o
W

9
V

cc
o

W
10

V
cc

o
W

11
V

cc
o

W
12

A
1I

X
CV

80
0-

FG
67

6

I/O
P1

I/O
P3

I/O
P4

I/O
P5

I/O
P6

I/O
P7

I/O
P8

V
ref

R1

I/O
R2

I/O
R3

V
ref

R4
I/O

R5

I/O
R6

I/O
R7

I/O
T

1
I/O

T
3

I/O
T

4
I/O

T
5

I/O
T

6
I/O

T
7

I/O
U1

V
ref

U2

I/O
U3

I/O
U4

I/O
U5

V
ref

U6

I/O
U7

I/O
V1

I/O
V3

I/O
V4

V
ref

V5
I/O

V6

I/O
V7

I/O
W

1

I/O
W

2
I/O

W
3

I/O
W

4
I/O

W
5

I/O
W

6
V

ref
Y1

I/O
Y2

I/O
Y3

I/O
Y4

I/O
Y5

I/O
Y6

I/O
AA

1

I/O
AA

3
I/O

AA
4

I/O
AA

5
I/O

A
B1

I/O
A

B2
V

ref
A

B3

I/O
A

B4
I/O

A
C1

I/O
A

C2
I/O

A
C3

V
cc

o
P9

V
cc

o
R8

V
cc

o
R9

V
cc

o
T

8

V
cc

o
U8

V
cc

o
V8

A
1J

X
CV

80
0-

FG
67

6

I/O
D1

I/O
D2

I/O
D3

I/O
E1

I/O
E2

I/O
E3

I/O
E4

I/O
F1

I/O
F3

V
cc

o
F4

I/O
G1

I/O
G2

I/O
G3

V
ref

G4

I/O
G5

I/O
G6

V
ref

H1
I/O

H2

I/O
H3

I/O
H4

I/O
H5

I/O
H6

I/O
H7

I/O
J1

I/O
J3

I/O
J4

I/O
J5

I/O
J6

I/O
J7

V
ref

K1

I/O
K2

I/O
K3

I/O
K4

I/O
K5

V
ref

K6
I/O

K7

I/O
L1

I/O
L3

I/O
L4

I/O
L5

I/O
L6

I/O
L7

I/O
M

1
V

ref
M

2

I/O
M

3
I/O

M
4

V
ref

M
5

I/O
M

6

I/O
M

7
I/O

N1

I/O
N3

I/O
N4

I/O
N5

I/O
N6

I/O
N7

I/O
N8

V
cc

o
J8

V
cc

o
K8

V
cc

o
L8

V
cc

o
M

8

V
cc

o
M

9
V

cc
o

N9

A
1K

X
CV

80
0-

FG
67

6

+2
.5

V

+3
.3

V
+3

.3
V

+3
.3

V
+3

.3
V

+3
.3

V
+3

.3
V

+3
.3

V
+3

.3
V

+3
.3

V
+3

.3
V

+3
.3

V
+3

.3
V

+3
.3

V
+3

.3
V

+3
.3

V
+3

.3
V

FP
RO

G
FD

O
N

E
FI

N
IT

FD
0

FD
1

FD
2

FD
3

FD
4

FD
5

FD
6

FD
7

FB
U

SY

FC
CL

K

CL
O

CK

FW
R

IT
E

FC
S

FT
D

I
FT

D
O

FT
M

S
FT

C
K

GN
D

+2
.5

V
+2

.5
V

NC
1

R
2

RE
3

D
E

4

D
5

GN
D

6

GN
D

7
NC

8
Y

9
Z

10
B

11
A

12
NC

13
V

CC
14

A4 LT
C4

91

1 2 3 4 5 6

J8 H
EA

D
ER

 1
X

6

+1
2V

+5
V

ST
X

SR
X

GN
D

TX
EN

A
8B

IN
V

ER
TE

R

A
8A

IN
V

ER
TE

R

+5
V

R7 10
0

R8 22
0

D5 BL
U

E
LE

D

D6 RE
D

 L
ED

LE
D

1

LE
D

2

D4 BL
U

E
LE

D

R6 10
0

1 2 3 4J5 H
EA

D
ER

 1
X

4

LE
D

1

LE
D

2

+5
V

+5
V

V
cc

O
SC

En
ab

le

A9 O
SC

IL
LA

TO
R

W
/E

N
A

BL
E

CL
O

CK
+5

V

SR
X

ST
X

TX
EN

QA
2

QA
4

QA
6

QA
8

Q
A

10

Q
A

12
Q

A
14

Q
A

16
Q

A
18

Q
A

20

Q
A

22
Q

A
24

Q
A

26

Q
A

28
Q

A
30

Q
A

32

Q
A

34

Q
A

36
Q

A
38

Q
A

40

Q
A

42
Q

A
44

Q
A

46

Q
A

48
Q

A
50

Q
A

52
Q

A
54

Q
A

56

Q
A

58
Q

A
60

Q
A

62
Q

A
64

Q
A

13
Q

A
15

Q
A

17

Q
A

19

Q
A

21

Q
A

23

Q
A

25

Q
A

27

Q
A

29

Q
A

31

Q
A

33

Q
A

35

Q
A

37

Q
A

39

Q
A

41

Q
A

43

Q
A

45

Q
A

47

Q
A

49

Q
A

51

QA
1

QA
3

QA
5

QA
7

QA
9

Q
A

11

Q
A

53

Q
A

55

Q
A

57

Q
A

59

Q
A

61

Q
A

63

SR
X

Q
B3

4
Q

B3
6

Q
B3

8
Q

B4
0

Q
B4

2
Q

B4
4

Q
B4

6
Q

B5
0

Q
B5

2
Q

B5
4

Q
B5

6
Q

B5
8

Q
B6

0
Q

B6
2

Q
B6

4

Q
B4

8

Q
B3

3
Q

B3
5

Q
B3

7
Q

B3
9

Q
B4

1

Q
B4

3
Q

B4
5

Q
B4

7
Q

B4
9

Q
B5

1
Q

B5
3

Q
B5

5
Q

B5
7

Q
B5

9
Q

B6
1

Q
B6

3

Q
B3

2

Q
B1

0
Q

B1
2

Q
B1

4
Q

B1
6

Q
B1

8
Q

B2
0

Q
B2

2
Q

B2
4

Q
B2

6
Q

B2
8

Q
B3

0
Q

B2
Q

B4
Q

B6
Q

B8

Q
B1

Q
B3

Q
B5

Q
B7

Q
B9

Q
B1

1
Q

B1
3

Q
B1

5
Q

B1
7

Q
B1

9
Q

B2
1

Q
B2

3
Q

B2
5

Q
B2

7
Q

B2
9

Q
B3

1

Figure A.4: Schematic of the Medusa FPGA-Based Dual-Port Controller (Model S).

99

100

Bibliography

[AAA+00] R.O. Ambrose, H. Aldridge, R.S. Askew, R.R. Burridge, W. Bluethmann,

M. Diftler, C. Lovchik, D. Magruder, and F. Rehnmark. “Robonaut:

NASA’s Space Humanoid”. IEEE Intelligent Systems, 15(4):57–63,

Jul/Aug 2000.

[ABBS00] B. Adams, C. Breazeal, R. Brooks, and B. Scassellati. “Humanoid Robots:

A New Kind of Tool”. IEEE Intelligent Systems, 15(4):25–31, Jul/Aug

2000.

[Bac97] M. Bacon. No Strings Attached: The Inside Story of Jim Henson’s

Creature Shop. New York: Macmillan, 1997.

[BBM+98] R.A. Brooks, C. Breazeal, M. Marjanović, B. Scassellati, and

M. Williamson. “The Cog Project: Building a Humanoid Robot”. In

C. Nehaniv, editor, Computation for Metaphors, Analogy, and Agents.

Berlin: Springer-Verlag, 1998.

[Bre02] C. Breazeal. Designing Sociable Robots. Cambridge, MA: MIT Press,

2002.

[CD58] A. Chapuis and E. Droz. Automata: A Historical and Technological Study.

London: B.T. Batsford Ltd, 1958.

[Joh02] Michael P. Johnson. Exploiting quaternions to support expressive interac-

tive character motion. PhD thesis, Massachusetts Institute of Technology,

2002.

[KB99] C. Kline and B. Blumberg. “The Art and Science of Synthetic Character

Design”. In Proceedings of the AISB1999 Symposium on AI and Creativity

in Entertainment and Visual Art, Edinburgh, Scotland, 1999.

101

[KNK+01] S. Kagami, K. Nishiwaki, J.J. Kuffner, T. Sugihara, M. Inaba, and

H. Inouet. “Design, Implementation, and Remote Operation of the

Humanoid H6”. In D. Rus and S. Singh, editors, Experimental Robotics

VII, pages 41–50. Berlin: Springer-Verlag, 2001.

[PW95] G.A. Pratt and M.W. Williamson. “Series Elastic Actuators”. In

IEEE/RSJ Int. Conf. on Intelligent Robotics and Systems (IROS), 1995.

[SH94] Mark Salisbury and Alan Hedgcock. Behind the Mask: Secrets of

Hollywood’s Monster Makers. London: Titan Books, 1994.

[SWA+02] Y. Sakagami, R. Watanabe, C. Aoyama, S. Matsunaga, N. Higaki, and

K. Fujimura. “The Intelligent ASIMO: System Overview and Integration”.

In IEEE/RSJ Int. Conf. on Intelligent Robotics and Systems (IR0S), 2002.

102

	Introduction
	Interactive Robot Control Overview
	Low-Level Motor Control
	About This Text

	The Robots
	Early Prototypes: Public Anemone
	Primary Application: Leonardo
	RoCo, A Robotic Computer

	Medusa Hardware
	Design Overview
	Eight-Channel Driver Boards
	Motor Drivers
	Sensor Electronics

	PIC-Based Single-Port Controller
	Power Conversion
	Controller Architecture

	FPGA-Based Dual-Port Controller

	Medusa Firmware
	PIC-Based Controller
	Support FPGA
	PIC Firmware

	FPGA-Based Controller
	FPGA Code Overview
	Soft-Core Processor
	Instruction Set
	Control Firmware

	Support Software
	Motor System Software Layer
	Motor System Overview
	High-Level (Behavior) Interface
	Mid-Level (Configuration) Interface
	Low-Level (Driver) Interface
	Abstract Tree Structure

	The Intra-Robot Communications Protocol
	IRCP Overview
	IRCP Subpacket Formats
	IRCP Major Type 0: Low-Level Motion Commands

	Concluding Thoughts
	Board Schematics
	Eight-Channel Driver Pack
	PIC-Based Single-Port Controller
	FPGA-Based Single-Port Controller
	FPGA-Based Single-Port Controller (Model S)

